Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6406-6423, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38742631

RESUMEN

Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Deinococcus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Deinococcus/efectos de la radiación , Deinococcus/genética , Deinococcus/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Estrés Fisiológico , Rayos Ultravioleta
2.
iScience ; 27(2): 108792, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38299112

RESUMEN

Due to their ability to recognize carbohydrate structures, lectins emerged as potential receptors for bacterial lipopolysaccharides (LPS). Despite growing interest in investigating the association between host receptor lectins and exogenous glycan ligands, the molecular mechanisms underlying bacterial recognition by human lectins are still not fully understood. We contributed to fill this gap by unveiling the molecular basis of the interaction between the lipooligosaccharide of Escherichia coli and the dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN). Specifically, a combination of different techniques, including fluorescence microscopy, surface plasmon resonance, NMR spectroscopy, and computational studies, demonstrated that DC-SIGN binds to the purified deacylated R1 lipooligosaccharide mainly through the recognition of its outer core pentasaccharide, which acts as a crosslinker between two different tetrameric units of DC-SIGN. Our results contribute to a better understanding of DC-SIGN-LPS interaction and may support the development of pharmacological and immunostimulatory strategies for bacterial infections, prevention, and therapy.

3.
Viruses ; 15(12)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38140530

RESUMEN

HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.


Asunto(s)
VIH-1 , VIH-1/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Liberación del Virus/fisiología
4.
PNAS Nexus ; 2(9): pgad310, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37780233

RESUMEN

Lipopolysaccharides are a hallmark of gram-negative bacteria, and their presence at the cell surface is key for bacterial integrity. As surface-exposed components, they are recognized by immunity C-type lectin receptors present on antigen-presenting cells. Human macrophage galactose lectin binds Escherichia coli surface that presents a specific glycan motif. Nevertheless, this high-affinity interaction occurs regardless of the integrity of its canonical calcium-dependent glycan-binding site. NMR of macrophage galactose-type lectin (MGL) carbohydrate recognition domain and complete extracellular domain revealed a glycan-binding site opposite to the canonical site. A model of trimeric macrophage galactose lectin was determined based on a combination of small-angle X-ray scattering and AlphaFold. A disulfide bond positions the carbohydrate recognition domain perpendicular to the coiled-coil domain. This unique configuration for a C-type lectin orients the six glycan sites of MGL in an ideal position to bind lipopolysaccharides at the bacterial surface with high avidity.

5.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37905063

RESUMEN

HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated auto-cleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins with variable modification of Gag VLP budding upon drug administration. Notably, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted a minor effect and synergized with CHMP2A-NS3. Localization studies demonstrated the re-localization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.

6.
Nat Commun ; 14(1): 4187, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443316

RESUMEN

Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.


Asunto(s)
Gryllidae , Animales , Masculino , Gryllidae/genética , Semen/metabolismo , Cromatina/genética , Cromatina/metabolismo , Espermatogénesis/genética , Histonas/metabolismo , Espermatozoides/metabolismo
7.
Commun Biol ; 6(1): 207, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813842

RESUMEN

CD47 recognized by its macrophage receptor SIRPα serves as a "don't eat-me" signal protecting viable cells from phagocytosis. How this is abrogated by apoptosis-induced changes in the plasma membrane, concomitantly with exposure of phosphatidylserine and calreticulin "eat-me" signals, is not well understood. Using STORM imaging and single-particle tracking, we interrogate how the distribution of these molecules on the cell surface correlates with plasma membrane alteration, SIRPα binding, and cell engulfment by macrophages. Apoptosis induces calreticulin clustering into blebs and CD47 mobility. Modulation of integrin affinity impacts CD47 mobility on the plasma membrane but not the SIRPα binding, whereas CD47/SIRPα interaction is suppressed by cholesterol destabilization. SIRPα no longer recognizes CD47 localized on apoptotic blebs. Overall, the data suggest that disorganization of the lipid bilayer at the plasma membrane, by inducing inaccessibility of CD47 possibly due to a conformational change, is central to the phagocytosis process.


Asunto(s)
Antígeno CD47 , Calreticulina , Humanos , Apoptosis , Calreticulina/metabolismo , Antígeno CD47/química , Antígeno CD47/metabolismo , Membrana Celular/metabolismo
8.
Nat Struct Mol Biol ; 30(1): 81-90, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604498

RESUMEN

The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Polímeros , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Polímeros/metabolismo , Proteínas Portadoras/metabolismo , Transporte de Proteínas
9.
Biomedicines ; 10(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36359404

RESUMEN

Virus-like particles constitute versatile vectors that can be used as vaccine platforms in many fields from infectiology and more recently to oncology. We previously designed non-infectious adenovirus-inspired 60-mer dodecahedric virus-like particles named ADDomers displaying on their surface either a short epitope or a large tumor/viral antigen. In this work, we explored for the first time the immunogenicity of ADDomers exhibiting melanoma-derived tumor antigen/epitope and their impact on the features of human dendritic cell (DC) subsets. We first demonstrated that ADDomers displaying tumor epitope/antigen elicit a strong immune-stimulating potential of human DC subsets (cDC2s, cDC1s, pDCs), which were able to internalize and cross-present tumor antigen, and subsequently cross-prime antigen-specific T-cell responses. To further limit off-target effects and enhance DC targeting, we engineered specific motifs to de-target epithelial cells and improve DCs' addressing. The improved engineered platform making it possible to display large antigen represents a tool to overcome the barrier of immune allele restriction, broadening the immune response, and paving the way to its potential utilization in humans as an off-the-shelf vaccine.

10.
Nat Commun ; 13(1): 5502, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127320

RESUMEN

Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.


Asunto(s)
Adenosina Trifosfatasas , Aminoglicósidos , Proteínas de Escherichia coli , Escherichia coli , Adenosina Trifosfatasas/metabolismo , Aminoglicósidos/farmacología , Antibacterianos/farmacología , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Fumaratos , Gentamicinas , Lípidos de la Membrana , Oxígeno/metabolismo , Fosfolípidos
11.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33372137

RESUMEN

Pathogenic and commensal bacteria often have to resist the harsh acidity of the host stomach. The inducible lysine decarboxylase LdcI buffers the cytosol and the local extracellular environment to ensure enterobacterial survival at low pH. Here, we investigate the acid stress-response regulation of Escherichia coli LdcI by combining biochemical and biophysical characterization with negative stain and cryoelectron microscopy (cryo-EM) and wide-field and superresolution fluorescence imaging. Due to deleterious effects of fluorescent protein fusions on native LdcI decamers, we opt for three-dimensional localization of nanobody-labeled endogenous wild-type LdcI in acid-stressed E. coli cells and show that it organizes into distinct patches at the cell periphery. Consistent with recent hypotheses that in vivo clustering of metabolic enzymes often reflects their polymerization as a means of stimulus-induced regulation, we show that LdcI assembles into filaments in vitro at physiologically relevant low pH. We solve the structures of these filaments and of the LdcI decamer formed at neutral pH by cryo-EM and reveal the molecular determinants of LdcI polymerization, confirmed by mutational analysis. Finally, we propose a model for LdcI function inside the enterobacterial cell, providing a structural and mechanistic basis for further investigation of the role of its supramolecular organization in the acid stress response.


Asunto(s)
Carboxiliasas/metabolismo , Microscopía Fluorescente/métodos , Estrés Fisiológico/fisiología , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos/genética , Carboxiliasas/fisiología , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Unión Proteica/genética , Multimerización de Proteína/genética
12.
Front Immunol ; 11: 583754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193398

RESUMEN

LRP1 is a large endocytic modular receptor that plays a crucial role in the scavenging of apoptotic material through binding to pattern-recognition molecules. It is a membrane anchored receptor of the LDL receptor family with 4 extracellular clusters of ligand binding modules called cysteine rich complement-type repeats that are involved in the interaction of LRP1 with its numerous ligands. Complement C1q was shown to interact with LRP1 and to be implicated in the phagocytosis of apoptotic cells. The present work aimed at exploring how these two large molecules interact at the molecular level using a dissection strategy. For that purpose, recombinant LRP1 clusters II, III and IV were produced in mammalian HEK293F cells and their binding properties were investigated. Clusters II and IV were found to interact specifically and efficiently with C1q with K Ds in the nanomolar range. The use of truncated C1q fragments and recombinant mutated C1q allowed to localize more precisely the binding site for LRP1 on the collagen-like regions of C1q (CLRs), nearby the site that is implicated in the interaction with the cognate protease tetramer C1r2s2. This site could be a common anchorage for other ligands of C1q CLRs such as sulfated proteoglycans and Complement receptor type 1. The use of a cellular model, consisting in CHO LRP1-null cells transfected with full-length LRP1 or a cluster IV minireceptor (mini IV) confirmed that mini IV interacts with C1q at the cell membrane as well as full-length LRP1. Further cellular interaction studies finally highlighted that mini IV can endorse the full-length LRP1 binding efficiency for apoptotic cells and that C1q has no impact on this interaction.


Asunto(s)
Complemento C1q/metabolismo , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Péptido Hidrolasas/metabolismo , Animales , Apoptosis/fisiología , Sitios de Unión/fisiología , Células CHO , Línea Celular , Membrana Celular/metabolismo , Cricetulus , Células HEK293 , Humanos , Ligandos , Dominios Proteicos/fisiología
13.
Sci Adv ; 6(14): eaaz7095, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270045

RESUMEN

Many viruses are known to form cellular compartments, also called viral factories. Paramyxoviruses, including measles virus, colocalize their proteomic and genomic material in puncta in infected cells. We demonstrate that purified nucleoproteins (N) and phosphoproteins (P) of measles virus form liquid-like membraneless organelles upon mixing in vitro. We identify weak interactions involving intrinsically disordered domains of N and P that are implicated in this process, one of which is essential for phase separation. Fluorescence allows us to follow the modulation of the dynamics of N and P upon droplet formation, while NMR is used to investigate the thermodynamics of this process. RNA colocalizes to droplets, where it triggers assembly of N protomers into nucleocapsid-like particles that encapsidate the RNA. The rate of encapsidation within droplets is enhanced compared to the dilute phase, revealing one of the roles of liquid-liquid phase separation in measles virus replication.


Asunto(s)
Virus del Sarampión/fisiología , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Espectroscopía de Resonancia Magnética , Sarampión/virología , Nucleoproteínas/química , Fosfoproteínas/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Viral , Proteínas Recombinantes , Termodinámica , Replicación Viral
14.
Opt Express ; 28(2): 2079-2090, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121906

RESUMEN

We propose a simple and compact microscope combining phase imaging with multi-color fluorescence using a standard bright-field objective. The phase image of the sample is reconstructed from a single, approximately 100 µm out-of-focus image taken under semi-coherent illumination, while fluorescence is recorded in-focus in epi-fluorescence geometry. The reproducible changes of the focus are achieved with specifically introduced chromatic aberration in the imaging system. This allows us to move the focal plane simply by changing the imaging wavelength. No mechanical movement of neither sample nor objective or any other part of the setup is therefore required to alternate between the imaging modality. Due to its small size and the absence of motorized components the microscope can easily be used inside a standard biological incubator and allows long-term imaging of cell culture in physiological conditions. A field-of-view of 1.2 mm2 allows simultaneous observation of thousands of cells with micro-meter spatial resolution in phase and multi-channel fluorescence mode. In this manuscript we characterize the system and show a time-lapse of cell culture in phase and multi-channel fluorescence recorded inside an incubator. We believe that the small dimensions, easy usage and low cost of the system make it a useful tool for biological research.


Asunto(s)
Imagen Óptica , Fenómenos Ópticos , Animales , Células HeLa , Hipocampo/citología , Humanos , Micrococcus luteus/citología , Microscopía Fluorescente , Neuronas/citología
15.
ACS Chem Biol ; 15(4): 990-1003, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32125823

RESUMEN

The Y-box binding protein 1 (YB1) is an established metastatic marker: high expression and nuclear localization of YB1 correlate with tumor aggressiveness, drug resistance, and poor patient survival in various tumors. In the nucleus, YB1 interacts with and regulates the activities of several nuclear proteins, including the DNA glycosylase, human endonuclease III (hNTH1). In the present study, we used Förster resonance energy transfer (FRET) and AlphaLISA technologies to further characterize this interaction and define the minimal regions of hNTH1 and YB1 required for complex formation. This work led us to design an original and cost-effective FRET-based biosensor for the rapid in vitro high-throughput screening for potential inhibitors of the hNTH1-YB1 complex. Two pilot screens were carried out, allowing the selection of several promising compounds exhibiting IC50 values in the low micromolar range. Interestingly, two of these compounds bind to YB1 and sensitize drug-resistant breast tumor cells to the chemotherapeutic agent, cisplatin. Taken together, these findings demonstrate that the hNTH1-YB1 interface is a druggable target for the development of new therapeutic strategies for the treatment of drug-resistant tumors. Moreover, beyond this study, the simple design of our biosensor defines an innovative and efficient strategy for the screening of inhibitors of therapeutically relevant protein-protein interfaces.


Asunto(s)
Antineoplásicos/análisis , Técnicas Biosensibles/métodos , Desoxirribonucleasa (Dímero de Pirimidina)/antagonistas & inhibidores , Unión Proteica/efectos de los fármacos , Proteína 1 de Unión a la Caja Y/antagonistas & inhibidores , Antineoplásicos/farmacología , Cisplatino/farmacología , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Células MCF-7 , Proyectos Piloto , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1 de Unión a la Caja Y/metabolismo
16.
Nat Commun ; 10(1): 3815, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444361

RESUMEN

Our knowledge of bacterial nucleoids originates mostly from studies of rod- or crescent-shaped bacteria. Here we reveal that Deinococcus radiodurans, a relatively large spherical bacterium with a multipartite genome, constitutes a valuable system for the study of the nucleoid in cocci. Using advanced microscopy, we show that D. radiodurans undergoes coordinated morphological changes at both the cellular and nucleoid level as it progresses through its cell cycle. The nucleoid is highly condensed, but also surprisingly dynamic, adopting multiple configurations and presenting an unusual arrangement in which oriC loci are radially distributed around clustered ter sites maintained at the cell centre. Single-particle tracking and fluorescence recovery after photobleaching studies of the histone-like HU protein suggest that its loose binding to DNA may contribute to this remarkable plasticity. These findings demonstrate that nucleoid organization is complex and tightly coupled to cell cycle progression in this organism.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Deinococcus/fisiología , Orgánulos/metabolismo , Ciclo Celular , ADN Bacteriano/genética , Sitios Genéticos/fisiología , Genoma Bacteriano/fisiología , Microscopía Intravital , Microscopía Fluorescente , Orgánulos/genética
17.
Front Immunol ; 8: 1034, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878781

RESUMEN

Calreticulin (CRT) is a well-known "eat-me" signal harbored by dying cells participating in their recognition by phagocytes. CRT is also recognized to deeply impact the immune response to altered self-cells. In this study, we focus on the role of the newly exposed CRT following cell death induction. We show that if CRT increases at the outer face of the plasma membrane and is well recognized by C1q even when phosphatidylserine is not yet detected, CRT is also released in the surrounding milieu and is able to interact with phagocytes. We observed that exogenous CRT is endocytosed by THP1 macrophages through macropinocytosis and that internalization is associated with a particular phenotype characterized by an increase of cell spreading and migration, an upregulation of CD14, an increase of interleukin-8 release, and a decrease of early apoptotic cell uptake. Importantly, CRT-induced pro-inflammatory phenotype was confirmed on human monocytes-derived macrophages by the overexpression of CD40 and CD274, and we found that monocyte-derived macrophages exposed to CRT display a peculiar polarization notably associated with a downregulation of the histocompatibility complex of class II molecules hampering its description through the classical M1/M2 dichotomy. Altogether our results highlight the role of soluble CRT with strong possible consequences on the macrophage-mediated immune response to dying cell.

18.
Sci Signal ; 9(452): ra107, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27803285

RESUMEN

Chemokines stimulate signals in cells by binding to G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. These chemoattractant cytokines also interact with heparan sulfate (HS), which provides positional information within tissues in the form of haptotactic gradients along which cells can migrate directionally. To investigate the mechanism by which HS modulates chemokine functions, we used the CXC chemokine CXCL12, which exists in different isoforms that all signal through CXCR4 but have distinct HS-binding domains. In experiments with both cell-associated and solubilized CXCR4, we found that although CXCL12γ bound to CXCR4 with a higher affinity than did CXCL12α, CXCL12γ displayed reduced signaling and chemotactic activities. These properties were caused by the specific carboxyl-terminal region of CXCL12γ, which, by interacting with CXCR4 sulfotyrosines, mediated high-affinity, but nonproductive, binding to CXCR4. HS prevented CXCL12γ from interacting with the CXCR4 sulfotyrosines, thereby functionally presenting the chemokine to its receptor such that its activity was similar to that of CXCL12α. HS had no effects on the binding of CXCL12α to CXCR4 or its biological activity, suggesting that this polysaccharide controls CXCL12 in an isoform-specific manner. These data suggest that the HS-dependent regulation of chemokine functions extends beyond the simple process of immobilization and directly modulates receptor ligation and activation.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/metabolismo , Heparitina Sulfato/metabolismo , Receptores CXCR4/metabolismo , Linfocitos T/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , Linfocitos T/citología
19.
Lab Chip ; 16(13): 2532-9, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27292590

RESUMEN

Acoustofluidics is acknowledged as a powerful tool offering a contactless and label-free manipulation of fluids, micro-beads, and living cells. To date, most techniques rely on the use of propagating acoustic waves and take advantage of the associated acoustic radiation force in standing or progressive fields. Here, we present a new approach based on the generation of an evanescent acoustic field above a substrate. This field is obtained by means of subsonic interfacial waves giving rise to a well-defined standing wave pattern. By both imaging and probing the evanescent acoustic field, we show that these interfacial waves are guided waves known as quasi-Scholte acoustic waves. Scholte waves present very interesting features for applications in acoustofluidics. Namely, they confine the acoustic energy to the vicinity of the surface, they are nearly lossless and thus can propagate over long distances along the substrate, and finally they do not require any particular material for the substrate. With a very simple and low-cost device we show several examples of applications including patterning lines or arrays of cells, triggering spinning of living cells, and separating plasma from RBC in a whole blood microdroplet.


Asunto(s)
Acústica/instrumentación , Dispositivos Laboratorio en un Chip , Análisis de la Célula Individual/instrumentación , Eritrocitos , Humanos , Modelos Teóricos , Análisis de la Célula Individual/métodos
20.
J Virol ; 90(11): 5256-5269, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984723

RESUMEN

UNLABELLED: Ebola virus infection requires the surface viral glycoprotein to initiate entry into the target cells. The trimeric glycoprotein is a highly glycosylated viral protein which has been shown to interact with host C-type lectin receptors and the soluble complement recognition protein mannose-binding lectin, thereby enhancing viral infection. Similarly to mannose-binding lectin, ficolins are soluble effectors of the innate immune system that recognize particular glycans at the pathogen surface. In this study, we demonstrate that ficolin-1 interacts with the Zaire Ebola virus (EBOV) glycoprotein, and we characterized this interaction by surface plasmon resonance spectroscopy. Ficolin-1 was shown to bind to the viral glycoprotein with a high affinity. This interaction was mediated by the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of the viral glycoprotein. Using a ficolin-1 control mutant devoid of sialic acid-binding capacity, we identified sialylated moieties of the mucin domain to be potential ligands on the glycoprotein. In cell culture, using both pseudotyped viruses and EBOV, ficolin-1 was shown to enhance EBOV infection independently of the serum complement. We also observed that ficolin-1 enhanced EBOV infection on human monocyte-derived macrophages, described to be major viral target cells,. Competition experiments suggested that although ficolin-1 and mannose-binding lectin recognized different carbohydrate moieties on the EBOV glycoprotein, the observed enhancement of the infection likely depended on a common cellular receptor/partner. In conclusion, ficolin-1 could provide an alternative receptor-mediated mechanism for enhancing EBOV infection, thereby contributing to viral subversion of the host innate immune system. IMPORTANCE: A specific interaction involving ficolin-1 (M-ficolin), a soluble effector of the innate immune response, and the glycoprotein (GP) of EBOV was identified. Ficolin-1 enhanced virus infection instead of tipping the balance toward its elimination. An interaction between the fibrinogen-like recognition domain of ficolin-1 and the mucin-like domain of Ebola virus GP occurred. In this model, the enhancement of infection was shown to be independent of the serum complement. The facilitation of EBOV entry into target host cells by the interaction with ficolin-1 and other host lectins shunts virus elimination, which likely facilitates the survival of the virus in infected host cells and contributes to the virus strategy to subvert the innate immune response.


Asunto(s)
Ebolavirus/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Proteínas del Sistema Complemento/metabolismo , Ebolavirus/química , Ebolavirus/genética , Células HEK293 , Humanos , Macrófagos/virología , Lectina de Unión a Manosa/metabolismo , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Ficolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA