Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Deliv ; 23(7): 2524-2531, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25835222

RESUMEN

Over the last decade, nanotherapeutics gained increasingly important role in drug delivery because of their frequently beneficial pharmacokinetics (PK) and lower toxicity when compared to classical systemic drug delivery. In view of therapeutic payload delivery, convective transport is crucial for systemic distribution via circulatory system, but the target domain is tissue outside vessels where transport is governed by diffusion. Here, we have computationally investigated the understudied interplay of physical transports to characterize PK of payload of nanotherapeutics. The analysis of human vasculature tree showed that convective transport is still 5 times more efficient than diffusion suggesting that circulating and payload releasing drug vectors can contribute mostly to systemic delivery. By comparing payload delivery using systemic circulation and drug vectors to microenvironment, internalized vectors were the most efficient and showed Area under the Curve almost 100 higher than in systemic delivery. The newly introduced zone of influence parameter indicated that vectors, especially internalized, lead to the largest tissue fraction covered with therapeutically significant payload concentration. The internalization to microenvironment minimizes effects of plasma domain on payload extravasation from nanotherapeutics. The computed results showed that classical PK, which mostly relies on concentration profiles in plasma, sometimes might be inadequate or not sufficient in explaining therapeutic efficacy of nanotherapeutics. These results provide a deeper look into PK of drug vectors and can help in the design of better drug delivery strategies.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Microambiente Tumoral/efectos de los fármacos , Transporte Biológico , Difusión , Liberación de Fármacos , Humanos , Farmacocinética
2.
Adv Healthc Mater ; 2(5): 632-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23584841

RESUMEN

This manuscript constitutes a review of several innovative biomedical technologies fabricated using the precision and accuracy of silicon micro- and nanofabrication. The technologies to be reviewed are subcutaneous nanochannel drug delivery implants for the continuous tunable zero-order release of therapeutics, multi-stage logic embedded vectors for the targeted systemic distribution of both therapeutic and imaging contrast agents, silicon and porous silicon nanowires for investigating cellular interactions and processes as well as for molecular and drug delivery applications, porous silicon (pSi) as inclusions into biocomposites for tissue engineering, especially as it applies to bone repair and regrowth, and porous silica chips for proteomic profiling. In the case of the biocomposites, the specifically designed pSi inclusions not only add to the structural robustness, but can also promote tissue and bone regrowth, fight infection, and reduce pain by releasing stimulating factors and other therapeutic agents stored within their porous network. The common material thread throughout all of these constructs, silicon and its associated dielectrics (silicon dioxide, silicon nitride, etc.), can be precisely and accurately machined using the same scalable micro- and nanofabrication protocols that are ubiquitous within the semiconductor industry. These techniques lend themselves to the high throughput production of exquisitely defined and monodispersed nanoscale features that should eliminate architectural randomness as a source of experimental variation thereby potentially leading to more rapid clinical translation.


Asunto(s)
Materiales Biocompatibles/síntesis química , Nanocápsulas/uso terapéutico , Nanomedicina/tendencias , Silicio/química , Ingeniería de Tejidos/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA