Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Space Sci Rev ; 218(8): 66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407497

RESUMEN

The Van Allen Probes mission operations materialized through a distributed model in which operational responsibility was divided between the Mission Operations Center (MOC) and separate instrument specific SOCs. The sole MOC handled all aspects of telemetering and receiving tasks as well as certain scientifically relevant ancillary tasks. Each instrument science team developed individual instrument specific SOCs proficient in unique capabilities in support of science data acquisition, data processing, instrument performance, and tools for the instrument team scientists. In parallel activities, project scientists took on the task of providing a significant modeling tool base usable by the instrument science teams and the larger scientific community. With a mission as complex as Van Allen Probes, scientific inquiry occurred due to constant and significant collaboration between the SOCs and in concert with the project science team. Planned cross-instrument coordinated observations resulted in critical discoveries during the seven-year mission. Instrument cross-calibration activities elucidated a more seamless set of data products. Specific topics include post-launch changes and enhancements to the SOCs, discussion of coordination activities between the SOCs, SOC specific analysis software, modeling software provided by the Van Allen Probes project, and a section on lessons learned. One of the most significant lessons learned was the importance of the original decision to implement individual team SOCs providing timely and well-documented instrument data for the NASA Van Allen Probes Mission scientists and the larger magnetospheric and radiation belt scientific community.

2.
Geophys Res Lett ; 49(12): e2021GL097013, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35865911

RESUMEN

We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the E × B velocity. Furthermore, we show that these "spatial" structures are intermittent and prominent outside of regions with strongest precipitation. The observations are then discussed in the context of possible mechanisms for irregularity creation.

3.
Space Sci Rev ; 218(5): 38, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757012

RESUMEN

This paper presents the highlights of joint observations of the inner magnetosphere by the Arase spacecraft, the Van Allen Probes spacecraft, and ground-based experiments integrated into spacecraft programs. The concurrent operation of the two missions in 2017-2019 facilitated the separation of the spatial and temporal structures of dynamic phenomena occurring in the inner magnetosphere. Because the orbital inclination angle of Arase is larger than that of Van Allen Probes, Arase collected observations at higher L -shells up to L ∼ 10 . After March 2017, similar variations in plasma and waves were detected by Van Allen Probes and Arase. We describe plasma wave observations at longitudinally separated locations in space and geomagnetically-conjugate locations in space and on the ground. The results of instrument intercalibrations between the two missions are also presented. Arase continued its normal operation after the scientific operation of Van Allen Probes completed in October 2019. The combined Van Allen Probes (2012-2019) and Arase (2017-present) observations will cover a full solar cycle. This will be the first comprehensive long-term observation of the inner magnetosphere and radiation belts.

4.
Phys Rev Lett ; 122(4): 045101, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768310

RESUMEN

A range of nonlinear wave structures, including Langmuir waves, unipolar electric fields, and bipolar electric fields, are often observed in association with whistler-mode chorus waves in near-Earth space. We demonstrate that the three seemingly different nonlinear wave structures originate from the same nonlinear electron trapping process by whistler-mode chorus waves. The ratio of the Landau resonant velocity to the electron thermal velocity controls the type of nonlinear wave structures that will be generated.

5.
Geophys Res Lett ; 42(15): 6170-6179, 2015 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27656009

RESUMEN

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ∼ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ∼40 s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

6.
J Geophys Res Space Phys ; 119(10): 8288-8298, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26167433

RESUMEN

Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr <Ω e , where Ω e is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃Ω e /2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at âˆ¼Ω e /2 is a natural consequence of the growth of two whistler modes with different properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...