Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 152: 107736, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39208675

RESUMEN

Novel anticancer strategies reduce side effects on healthy tissues by elevating the lethal abilities of cancer cells. The development of effective particles with good bioavailability and selectivity remains problematic. For undesirable features, green chemistry is used to synthesize the best compounds, or natural-based particles are improved. Photodynamic therapy (PDT), modelled on phthalocyanines (Pcs), still delivers second-generation sensitizers which are complemented with metal ions, such as Zn2+, Al3+, or Ga3+. Gallium octacarboxyphthalocyanine hydroxide (Ga(OH)PcOC), was designed for skin cancer treatment, and was used as a pro-apoptotic and pro-oxidative agent on normal skin cell lines, fibroblasts (NHDF), and keratinocytes (HaCaT), with promising selectivity against melanoma cancer cells (Me45) in vitro. Compared to the previous reported findings, where the ZnPcOC acted on the skin cell lines at higher doses, the sensitivities to the Ga(OH)PcOC allows for an effective reduction of the sensitizer dose. The effective dose, for a novel Ga(OH)PcOC particle, was significantly reduced from 30 µM to 6 µM on Me45 cancer cells, tested using 24 h MTT viability, as well as cytometric pro-oxidative and pro-apoptotic assays. The promising photosensitizer did not reduce viability in normal fibroblasts and keratinocytes without reactive oxygen species (ROS) elevation or apoptosis induction. The improvement to the previous findings is better Ga-based photosensitizer selectivity against the cancer Me45 cells, then observed in Zn-based compounds.


Asunto(s)
Antineoplásicos , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Galio , Indoles , Fármacos Fotosensibilizantes , Neoplasias Cutáneas , Humanos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Galio/química , Galio/farmacología , Estructura Molecular , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Isoindoles/farmacología , Isoindoles/química , Isoindoles/síntesis química , Fotoquimioterapia , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Hidróxidos/química , Hidróxidos/farmacología
2.
J Photochem Photobiol B ; 190: 146-153, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30551028

RESUMEN

Zn-based phthalocyanine acts as drug or photosensitizer in photodynamic therapy (PDT) for the treatment of cancer cells. The activated zinc octacarboxyphthalocyanine (ZnPcOC) reacts with oxygen, to generate reactive oxygen species for the damage of melanoma cancer cells, Me45. This in vitro study aimed at investigating the cytotoxic effects of different concentrations of ZnPcOC activated with a diode laser (λ = 685 nm) on Me45, and normal human fibroblast cells, NHDF. To perform this study 104 cells/ml were seeded in 96-well plates and allowed to attach overnight, after which cells were treated with different concentrations of ZnPcOC (10, 20 and 30 µM). After 4 h, cells were irradiated with a constant light dose of 2.5; 4.5 and 7.5 J/cm2. Post-irradiated cells were incubated for 24 h before cell viability was measured using the MTT viability assay. Data indicated that high concentrations of ZnPcOC (30 µM) in its inactive state are not cytotoxic to the melanoma cancer cells and normal fibroblasts. Moreover, the results showed that photoactivated ZnPcOC (30 µM) was able to reduce the cell viability of melanoma and fibroblast to about 50%, respectively. At this photosensitizing concentration the efficacy the treatment light dose of 2.5; 4.5 and 7.5 J/cm2 was evaluated against Me45 cells. ZnPcOC at a concentration of 30 µM activated with a light dose of 2.5; 4.5 and 7.5 J/cm2 was the most efficient for the killing of melanoma cancer cells. Melanoma cancer cells after PDT with a photosensitizing concentration of 30 µM ZnPcOC and a treatment light dose of 2.5; 4.5 and 7.5 J/cm2 showed certain pro-apoptotic characteristics, such as direct inducer (early apoptosis) and long-term inducer, also (late apoptosis). This concludes that low concentrations of ZnPcOC, activated with the appropriate light dose, can be used to induce cell death in melanoma cells via ROS-induces apoptosis pathway, what was confirmed with cytometric ROS measurements. Our in vitro study showed that ZnPcOC mediated photodynamic therapy is an effective treatment option for melanoma Me45 cancer cells. 30 µM of ZnPcOC with the treatment light dose of 2.5 J/cm2 from a LED diode laser source, with a wavelength of 685 nm, was adequate to destroy melanoma cancer cells via ROS-induced apoptosis pathway, with low killing effects on healthy NHDF normal fibroblasts.


Asunto(s)
Indoles/uso terapéutico , Melanoma/terapia , Compuestos Organometálicos/uso terapéutico , Fotoquimioterapia/métodos , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Indoles/efectos de la radiación , Isoindoles , Láseres de Semiconductores/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Compuestos Organometálicos/efectos de la radiación , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Zinc
3.
J Mol Model ; 23(2): 51, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28161779

RESUMEN

The influence of albumin and amino acids (L-serine, glycine, L-histidine, L-tryptophan, L-cysteine) on the properties of aluminum octacarboxyphthalocyanine hydroxide (Al(OH)PcOC) was investigated in a phosphate buffer (pH 8.0). Particular attention was paid to the spectroscopic properties and photostability of Al(OH)PcOC. The effect of albumin or amino acids on the photodegradation of Al(OH)PcOC was examined in water using red light: 685 nm and daylight irradiation. Analysis of kinetic curves indicated that interaction with those molecules increases the photostability of Al(OH)PcOC. The molecular structure of Al(OH)PcOC complexes (in vacuum and in water) with axially or equatorially coordinated amino acids was studied by the B3LYP/6-31G* method, and the effects on molecular structure and electronic absorption spectrum were investigated on the basis of the density functional theory. The calculation results revealed that axial coordination significantly reduces the non-planarity of the phthalocyanine ring, and, thus, alters the electronic structure. On the other hand, hydrogen bonding of phthalocyanine side COOH groups with amino acids, in equatorial complexes, does not change the structure within the center of the phthalocyanine, and causes only a slight increase in UV-vis bands intensity, which is in perfect agreement with experimental data. Graphical abstract Structure of equatorial complex of Al(OH)PcOC with L-histidine calculated byB3LYP/6-31G(d) method. Dotted lines H-bonds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA