Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854124

RESUMEN

Background: Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. Methods: For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. Results: These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. Conclusion: These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38571695

RESUMEN

In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (TNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an auto-regulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.


Asunto(s)
Productos Biológicos , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Células Madre Pluripotentes Inducidas/patología , Citocinas/farmacología , Macrófagos , Inflamación/patología , Antiinflamatorios/farmacología , Productos Biológicos/uso terapéutico
3.
J Immunol Regen Med ; 132021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34027260

RESUMEN

INTRODUCTION: Macrophages are capable of extreme plasticity and their activation state has been strongly associated with solid tumor growth progression and regression. Although the macrophage response to extracellular matrix (ECM) isolated from normal tissue is reasonably well understood, there is a relative dearth of information regarding their response to ECM isolated from chronically inflamed tissues, pre-neoplastic tissues, and neoplastic tissues. Esophageal adenocarcinoma (EAC) is a type of neoplasia driven by chronic inflammation in the distal esophagus, and the length of the esophagus provides the opportunity to investigate macrophage behavior in the presence of ECM isolated from a range of disease states within the same organ. METHODS: Normal, metaplastic, and neoplastic ECM hydrogels were prepared from decellularized EAC tissue. The hydrogels were evaluated for their nanofibrous structure (SEM), biochemical profile (targeted and global proteomics), and direct effect upon macrophage (THP-1 cell) activation state (qPCR, ELISA, immunolabeling) and indirect effect upon epithelial cell (Het-1A) migration (Boyden chamber). RESULTS: Nanofibrous ECM hydrogels from the three tissue types could be formed, and normal and neoplastic ECM showed distinctive protein profiles by targeted and global mass spectroscopy. ECM proteins functionally related to cancer and tumorigenesis were identified in the neoplastic esophageal ECM including collagen alpha-1(VIII) chain (COL8A1), lumican, and elastin. Metaplastic and neoplastic esophageal ECM induce distinctive effects upon THP-1 macrophage signaling compared to normal esophageal ECM. These effects include activation of pro-inflammatory IFNγ and TNFα gene expression and anti-inflammatory IL1RN gene expression. Most notably, neoplastic ECM robustly increased macrophage TNFα protein expression. The secretome of macrophages pre-treated with metaplastic and neoplastic ECM increases the migration of normal esophageal epithelial cells, similar behavior to that shown by tumor cells. Metaplastic ECM shows similar but less pronounced effects than neoplastic ECM suggesting the abnormal signals also exist within the pre-cancerous state. CONCLUSION: A progressively diseased ECM, as exists within the esophagus exposed to chronic gastric reflux, can provide insights into novel biomarkers of early disease and identify potential therapeutic targets.

4.
Acta Biomater ; 133: 74-86, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33823324

RESUMEN

Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Artritis Reumatoide/terapia , Materiales Biocompatibles , Humanos , Inmunomodulación , Inmunoterapia , Osteoartritis/terapia
5.
Sci Adv ; 6(27): eaba4526, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32656339

RESUMEN

Chronic inflammatory gastric reflux alters the esophageal microenvironment and induces metaplastic transformation of the epithelium, a precancerous condition termed Barrett's esophagus (BE). The microenvironmental niche, which includes the extracellular matrix (ECM), substantially influences cell phenotype. ECM harvested from normal porcine esophageal mucosa (eECM) was formulated as a mucoadhesive hydrogel, and shown to largely retain basement membrane and matrix-cell adhesion proteins. Dogs with BE were treated orally with eECM hydrogel and omeprazole (n = 6) or omeprazole alone (n = 2) for 30 days. eECM treatment resolved esophagitis, reverted metaplasia to a normal, squamous epithelium in four of six animals, and downregulated the pro-inflammatory tumor necrosis factor-α+ cell infiltrate compared to control animals. The metaplastic tissue in control animals (n = 2) did not regress. The results suggest that in vivo alteration of the microenvironment with a site-appropriate, mucoadhesive ECM hydrogel can mitigate the inflammatory and metaplastic response in a dog model of BE.

6.
J Orthop Res ; 37(6): 1287-1293, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977548

RESUMEN

Stem cells provide tremendous promise for the development of new therapeutic approaches for musculoskeletal conditions. In addition to their multipotency, certain types of stem cells exhibit immunomodulatory effects that can mitigate inflammation and enhance tissue repair. However, the translation of stem cell therapies to clinical practice has proven difficult due to challenges in intradonor and interdonor variability, engraftment, variability in recipient microenvironment and patient indications, and limited therapeutic biological activity. In this regard, the success of stem cell-based therapies may benefit from cellular engineering approaches to enhance factors such as purification, homing and cell survival, trophic effects, or immunomodulatory signaling. By combining recent advances in gene editing, synthetic biology, and tissue engineering, the potential exists to create new classes of "designer" cells that have prescribed cell-surface molecules and receptors as well as synthetic gene circuits that provide for autoregulated drug delivery or enhanced tissue repair. Published by Wiley Periodicals, Inc. J Orthop Res 37:1287-1293, 2019.


Asunto(s)
Ingeniería Genética/métodos , Trasplante de Células Madre/métodos , Animales , Epigénesis Genética , Edición Génica , Humanos , Ortopedia , Ingeniería de Tejidos
7.
Biomacromolecules ; 16(8): 2463-74, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26166192

RESUMEN

Novel cisplatin (CDDP)-loaded, polypeptide-based vesicles for the targeted delivery of cisplatin to cancer cells have been prepared. These vesicles were formed from biocompatible and biodegradable maleimide-poly(ethylene oxide)114-b-poly(L-glutamic acid)12 (Mal-PEG114-b-PLG12) block copolymers upon conjugation with the drug itself. CDDP conjugation forms a short, rigid, cross-linked, drug-loaded, hydrophobic block in the copolymer, and subsequently induces self-assembly into hollow vesicle structures with average hydrodynamic diameters (Dh) of ∼ 270 nm. CDDP conjugation is critical to the formation of the vesicles. The reactive maleimide-PEG moieties that form the corona and inner layer of the vesicles were protected via formation of a reversible Diels-Alder (DA) adduct throughout the block copolymer synthesis so as to maintain their integrity. Drug release studies demonstrated a low and sustained drug release profile in systemic conditions (pH = 7.4, [Cl(-)] = 140 mM) with a higher "burst-like" release rate being observed under late endosomal/lysosomal conditions (pH = 5.2, [Cl(-)] = 35 mM). Further, the peripheral maleimide functionalities on the vesicle corona were conjugated to thiol-functionalized folic acid (FA) (via in situ reduction of a novel bis-FA disulfide, FA-SS-FA) to form an active targeting drug delivery system. These targeting vesicles exhibited significantly higher cellular binding/uptake into and dose-dependent cytotoxicity toward cancer cells (HeLa) compared to noncancerous cells (NIH-3T3), which show high and low folic acid receptor (FR) expression, respectively. This work thus demonstrates a novel approach to polypeptide-based vesicle assembly and a promising strategy for targeted, effective CDDP anticancer drug delivery.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Cisplatino/química , Liberación de Fármacos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ratones , Células 3T3 NIH
8.
ACS Biomater Sci Eng ; 1(11): 1139-1150, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26985455

RESUMEN

Trauma-induced heterotopic ossification (HO) and fibrodysplasia ossificans progressiva (FOP) are acquired and genetic variants of pathological bone formation occurring in soft tissues. Conventional treatment modalities target the inflammatory processes preceding bone formation. We investigated the development of a prophylaxis for heterotopic bone formation by addressing the biological basis for HO - dysregulation in the bone morphogenetic protein (BMP) signaling pathway. We previously reported the synthesis of cationic nanogel nanostructured polymers (NSPs) for efficient delivery of short interfering ribonucleic acids (siRNAs) and targeted gene silencing. Results suggested that nanogel:siRNA weight ratios of 1:1 and 5:1 silenced Runx2 and Osx gene expression in primary mouse osteoblasts with a constitutively active (ca) BMP Receptor 1A (BMPR1A) by the Q233D mutation. Repeated RNAi treatments over 14 days significantly inhibited alkaline phosphatase activity in caBMPR1A osteoblasts. Hydroxyapatite (HA) deposition was diminished over 28 days in culture, though complete suppression of HA deposition was not achieved. Outcome data suggested minimal cytotoxicity of nanogel-based RNAi therapeutics, and the multistage disruption of BMP-induced bone formation processes. This RNAi based approach to impeding osteoblastic differentiation and subsequent bone formation may form the basis of a clinical therapy for heterotopic bone formation.

9.
Clin Orthop Relat Res ; 473(6): 2139-49, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25448327

RESUMEN

BACKGROUND: Heterotopic ossification (HO) may occur after musculoskeletal trauma, traumatic brain injury, and total joint arthroplasty. As such, HO is a compelling clinical concern in both military and civilian medicine. A possible etiology of HO involves dysregulated signals in the bone morphogenetic protein osteogenic cascade. Contemporary treatment options for HO (ie, nonsteroidal antiinflammatory drugs and radiation therapy) have adverse effects associated with their use and are not biologically engineered to abrogate the molecular mechanisms that govern osteogenic differentiation. QUESTIONS/PURPOSES: We hypothesized that (1) nanogel-mediated short interfering RNA (siRNA) delivery against Runt-related transcription factor 2 (Runx2) and osterix (Osx) genes will decrease messenger RNA expression; (2) inhibit activity of the osteogenic marker alkaline phosphatase (ALP); and (3) inhibit hydroxyapatite (HA) deposition in osteoblast cell cultures. METHODS: Nanogel nanostructured polymers delivered siRNA in 48-hour treatment cycles against master osteogenic regulators, Runx2 and Osx, in murine calvarial preosteoblasts (MC3T3-E1.4) stimulated for osteogenic differentiation by recombinant human bone morphogenetic protein (rhBMP-2). The efficacy of RNA interference (RNAi) therapeutics was determined by quantitation of messenger RNA knockdown (by quantitative reverse transcription-polymerase chain reaction), downstream protein knockdown (determined ALP enzymatic activity assay), and HA deposition (determined by OsteoImage™ assay). RESULTS: Gene expression assays demonstrated that nanogel-based RNAi treatments at 1:1 and 5:1 nanogel:short interfering RNA weight ratios reduced Runx2 expression by 48.59% ± 19.53% (p < 0.001) and 43.22% ± 18.01% (both p < 0.001). The same 1:1 and 5:1 treatments against both Runx2 and Osx reduced expression of Osx by 51.65% ± 10.85% and 47.65% ± 9.80% (both p < 0.001). Moreover, repeated 48-hour RNAi treatment cycles against Runx2 and Osx rhBMP-2 administration reduced ALP activity after 4 and 7 days. ALP reductions after 4 days in culture by nanogel 5:1 and 10:1 RNAi treatments were 32.4% ± 12.0% and 33.6% ± 13.8% (both p < 0.001). After 7 days in culture, nanogel 1:1 and 5:1 RNAi treatments produced 35.9% ± 14.0% and 47.7% ± 3.2% reductions in ALP activity. Osteoblast mineralization data after 21 days suggested that nanogel 1:1, 5:1, and 10:1 RNAi treatments decreased mineralization (ie, HA deposition) from cultures treated only with rhBMP-2 (p < 0.001). However, despite RNAi attack on Runx2 and Osx, HA deposition levels remained greater than non-rhBMP-2-treated cell cultures. CONCLUSIONS: Although mRNA and protein knockdown were confirmed as a result of RNAi treatments against Runx2 and Osx, complete elimination of mineralization processes was not achieved. RNAi targeting mid- and late-stage osteoblast differentiation markers such as ALP, osteocalcin, osteopontin, and bone sialoprotein) may produce the desired RNAi-nanogel nanostructured polymer HO prophylaxis. CLINICAL RELEVANCE: Successful HO prophylaxis should target and silence osteogenic markers critical for heterotopic bone formation processes. The identification of such markers, beyond RUNX2 and OSX, may enhance the effectiveness of RNAi prophylaxes for HO.


Asunto(s)
Calcificación Fisiológica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Nanoestructuras , Osteoblastos/metabolismo , Ácidos Polimetacrílicos/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/metabolismo , Transfección/métodos , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Calcificación Fisiológica/efectos de los fármacos , Cationes , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Durapatita/metabolismo , Geles , Ratones , Osteoblastos/efectos de los fármacos , ARN Interferente Pequeño/genética , Factor de Transcripción Sp7 , Factores de Tiempo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...