Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(28): e2301496, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544907

RESUMEN

Tendrils of climbing plants coil along their length, thus forming a striking helical spring and generating tensional forces. It is found that, for tendrils of the passion flower Passiflora caerulea, the generated force lies in the range of 6-140 mN, which is sufficient to lash the plant tightly to its substrate. Further, it is revealed that the generated force strongly correlates with the water status of the plant. Based on a combination of in situ force measurements with anatomical investigations and dehydration-rehydration experiments on both entire tendril segments and isolated lignified tissues, a two-phasic mechanism for spring formation is proposed. First, during the free coiling phase, the center of the tendril begins to lignify unilaterally. At this stage, both the generated tension and the stability of the form of the spring still depend on turgor pressure. The unilateral contraction of a bilayer as being the possible driving force for the tendril coiling motion is discussed. Second, in a stabilization phase, the entire center of the coiled tendril lignifies, stiffening the spring and securing its function irrespective of its hydration status.


Asunto(s)
Passiflora , Fenómenos Mecánicos
2.
Adv Mater ; 35(22): e2211902, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37024772

RESUMEN

Motile organs have evolved in climbing plants enabling them to find a support and, after secure attachment, to reach for sunlight without investing in a self-supporting stem. Searching movements, the twining of stems, and the coiling of tendrils are involved in successful plant attachment. Such coiling movements have great potential in robotic applications, especially if they are reversible. Here, the underlying mechanism of tendril movement based on contractile fibers is reported, as illustrated by a function-morphological analysis of tendrils in several liana species and the encoding of such a principle in a core-shell multimaterial fiber (MMF) system. MMFs are composed of a shape-memory core fiber (SMCF) and an elastic shell. The shape-memory effect of the core fibers enables the implementation of strain mismatch in the MMF by physical means and provides thermally controlled reversible motion. The produced MMFs show coiling and/or uncoiling behavior, with a high reversible actuation magnitude of ≈400%, which is almost 20 times higher compared with similar stimuli for sensitive soft actuators. The movements in these MMFs rely on the crystallization/melting behavior of oriented macromolecules of SMCF.

3.
J Exp Bot ; 73(4): 1190-1203, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34673926

RESUMEN

The climbing passion flower Passiflora discophora features branched tendrils with multiple adhesive pads at their tips allowing it to attach to large-diameter supports and to flat surfaces. We conducted tensile tests to quantify the performance of this attachment system. We found that the force at failure varies with substrate, ontogenetic state (turgescent or senescent), and tendril size (i.e. tendril cross-sectional area and pad area). The tendrils proved to be well balanced in size and to attach firmly to a variety of substrates (force at failure up to 2N). Pull-off tests performed with tendrils grown on either epoxy, plywood, or beech bark revealed that senescent tendrils could still bear 24, 64, or 100% of the force measured for turgescent tendrils, respectively, thus providing long-lasting attachment at minimal physiological costs. The tendril main axis was typically the weakest part of the adhesive system, whereas the pad-substrate interface never failed. This suggests that the plants use the slight oversizing of adhesive pads as a strategy to cope with 'unpredictable' substrates. The pads, together with the spring-like main axis, which can, as shown, dissipate a large amount of energy when straightened, thus constitute a fail-safe attachment system.


Asunto(s)
Passiflora , Adhesivos , Fenómenos Biomecánicos/fisiología , Biofisica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...