Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23332, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857800

RESUMEN

Polar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.

2.
Sci Rep ; 10(1): 13226, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764583

RESUMEN

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator [Formula: see text] and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced ([Formula: see text]) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ([Formula: see text]). We propose that the gap above [Formula: see text] remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.

3.
Nanotechnology ; 31(16): 165201, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31860886

RESUMEN

The non-volatile spin-orbit torque magnetic random access memory (SOT-MRAM) is a very attractive memory technology for near future computers because it has various advantages such as non-volatility, high density and scalability. In the present work we propose a model of a graphene recording device for the SOT-MRAM unit cell, consisting of a quasi-freestanding graphene intercalated with Au and an ultra-thin Pt layer sandwiched between graphene and a magnetic tunnel junction. As a result of using the claimed graphene recording memory element, a faster operation and lower energy consumption will be achieved under the recording information by reducing the electric current required to record. The efficiency of the graphene recording element was confirmed by the experimental results and the theoretical estimations.

4.
Nature ; 576(7787): 416-422, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853084

RESUMEN

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

5.
Sci Rep ; 8(1): 6544, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695801

RESUMEN

Effect of magnetization generated by synchrotron or laser radiation in magnetically-doped and pristine topological insulators (TIs) is presented and analyzed using angle-resolved photoemission spectroscopy. It was found that non-equal photoexcitation of the Dirac cone (DC) states with opposite momenta and spin orientation indicated by the asymmetry in photoemission intensity of the DC states is accompanied by the k||-shift of the DC states relative to the non-spin-polarized conduction band states located at k|| = 0. We relate the observed k||-shift to the induced surface in-plane magnetic field and corresponding magnetization due to the spin accumulation. The direction of the DC k||-shift and its value are changed with photon energy in correlation with variation of the sign and magnitude of the DC states intensity asymmetry. The theoretical estimations describe well the effect and predict the DC k||-shift values which corroborate the experimental observations. This finding opens new perspectives for effective local magnetization manipulation.

6.
Sci Rep ; 7(1): 3353, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28611416

RESUMEN

One of the most promising platforms for spintronics and topological quantum computation is the two-dimensional electron gas (2DEG) with strong spin-orbit interaction and out-of-plane ferromagnetism. In proximity to an s-wave superconductor, such 2DEG may be driven into a topologically non-trivial superconducting phase, predicted to support zero-energy Majorana fermion modes. Using angle-resolved photoemission spectroscopy and ab initio calculations, we study the 2DEG at the surface of the vanadium-doped polar semiconductor with a giant Rashba-type splitting, BiTeI. We show that the vanadium-induced magnetization in the 2DEG breaks time-reversal symmetry, lifting Kramers degeneracy of the Rashba-split surface state at the Brillouin zone center via formation of a huge gap of about 90 meV. As a result, the constant energy contour inside the gap consists of only one circle with spin-momentum locking. These findings reveal a great potential of the magnetically-doped semiconductors with a giant Rashba-type splitting for realization of novel states of matter.

7.
Sci Rep ; 7: 45797, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28378826

RESUMEN

Two- and three-dimensional topological insulators are the key materials for the future nanoelectronic and spintronic devices and quantum computers. By means of angle- and spin-resolved photoemission spectroscopy we study the electronic and spin structure of the Bi-bilayer/3D topological insulator in quantum tunneling regime formed under the short annealing of Bi2Te2.4Se0.6. Owing to the temperature-induced restructuring of the topological insulator's surface quintuple layers, the hole-like spin-split Bi-bilayer bands and the parabolic electronic-like state are observed instead of the Dirac cone. Scanning Tunneling Microscopy and X-ray Photoemission Spectroscopy measurements reveal the appearance of the Bi2 terraces at the surface under the annealing. The experimental results are supported by density functional theory calculations, predicting the spin-polarized Bi-bilayer bands interacting with the quintuple-layers-derived states. Such an easily formed heterostructure promises exciting applications in spin transport devices and low-energy electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...