Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Rep ; 14(1): 13030, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844772

RESUMEN

Digital media (DM) takes an increasingly large part of children's time, yet the long-term effect on brain development remains unclear. We investigated how individual effects of DM use (i.e., using social media, playing video games, or watching television/videos) on the development of the cortex (i.e., global cortical surface area), striatum, and cerebellum in children over 4 years, accounting for both socioeconomic status and genetic predisposition. We used a prospective, multicentre, longitudinal cohort of children from the Adolescent Brain and Cognitive Development Study, aged 9.9 years when entering the study, and who were followed for 4 years. Annually, children reported their DM usage through the Youth Screen Time Survey and underwent brain magnetic resonance imaging scans every 2 years. Quadratic-mixed effect modelling was used to investigate the relationship between individual DM usage and brain development. We found that individual DM usage did not alter the development of cortex or striatum volumes. However, high social media usage was associated with a statistically significant change in the developmental trajectory of cerebellum volumes, and the accumulated effect of high-vs-low social media users on cerebellum volumes over 4 years was only ß = - 0.03, which was considered insignificant. Nevertheless, the developmental trend for heavy social media users was accelerated at later time points. This calls for further studies and longer follow-ups on the impact of social media on brain development.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Juegos de Video , Humanos , Niño , Masculino , Femenino , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Estudios Longitudinales , Juegos de Video/efectos adversos , Medios de Comunicación Sociales , Estudios Prospectivos , Desarrollo Infantil , Adolescente , Cerebelo/crecimiento & desarrollo , Cerebelo/diagnóstico por imagen
2.
J Cogn ; 7(1): 45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799081

RESUMEN

Our performance on cognitive tasks fluctuates: the same individual completing the same task will differ in their response's moment-to-moment. For decades cognitive fluctuations have been implicitly ignored - treated as measurement error - with a focus instead on aggregates such as mean performance. Leveraging dense trial-by-trial data and novel time-series methods we explored variability as an intrinsically important phenotype. Across eleven cognitive tasks with over 7 million trials, we found highly reliable interindividual differences in cognitive variability in every task we examined. These differences are both qualitatively and quantitatively distinct from mean performance. Moreover, we found that a single dimension for variability across tasks was inadequate, demonstrating that previously posited global mechanisms for cognitive variability are at least partially incomplete. Our findings indicate that variability is a fundamental part of cognition - with the potential to offer novel insights into developmental processes.

3.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38220577

RESUMEN

Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task, a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow, gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.


Asunto(s)
Magnetoencefalografía , Memoria a Corto Plazo , Humanos , Memoria Espacial , Cognición
4.
NPJ Sci Learn ; 8(1): 12, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149680

RESUMEN

A key goal in cognitive training research is understanding whether cognitive training enhances general cognitive capacity or provides only task-specific improvements. Here, we developed a quantitative model for describing the temporal dynamics of these two processes. We analyzed data from 1300 children enrolled in an 8 week working memory training program that included 5 transfer test sessions. Factor analyses suggested two separate processes: an early task-specific improvement, accounting for 44% of the total increase, and a slower capacity improvement. A hidden Markov model was then applied to individual training data, revealing that the task-specific improvement plateaued on the third day of training on average. Thus, training is not only task specific or transferable but a combination of the two. The models provide methods for quantifying and separating these processes, which is crucial for studying the effects of cognitive training and relating these effects to neural correlates.

5.
Acta Paediatr ; 112(7): 1511-1523, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36920331

RESUMEN

AIM: The neuronal mechanism linking the association between maternal diabetes mellitus (DM) and risk of attention deficit hyperactivity disorder (ADHD) symptoms and working memory deficits in children was investigated. METHODS: A total of 6291 children (52% boys) born beyond 28 weeks of gestation were included and underwent brain magnetic resonance imaging scans at 9-10 years. Subcortical brain volumes were estimated from the T1-weighted images. ADHD symptoms were assessed using factorial analysis of the Child Behaviour Checklist completed by parents/caregivers. Working memory performance was assessed with the NIH Toolbox. RESULTS: Compared to unexposed children, those exposed to DM (n = 422) had smaller (ß = -0.15, p = 0.001) volumes of pooled deep grey matter (GM). Regional analysis revealed smaller volumes of the caudate nucleus, putamen, thalamus and cerebellum but not of hippocampus. They also had altered cortico-striatal white matter projection tracts. DM was not associated with working memory deficits or inattention, but with increased hyperactivity/impulsivity and Sluggish Cognitive Tempo symptoms in boys. This hyperactivity/impulsivity symptom in boys was partially mediated by smaller deep GM volume. CONCLUSION: Exposure to DM during pregnancy leads to altered deep GM development during late childhood in their offspring. This contributed to an increased risk of hyperactivity/impulsivity symptoms in boys.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Diabetes Gestacional , Efectos Tardíos de la Exposición Prenatal , Masculino , Femenino , Embarazo , Humanos , Niño , Trastorno por Déficit de Atención con Hiperactividad/etiología , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Trastornos de la Memoria/patología
6.
NPJ Sci Learn ; 7(1): 33, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522329

RESUMEN

Schooling, socioeconomic status (SES), and genetics all impact intelligence. However, it is unclear to what extent their contributions are unique and if they interact. Here we used a multi-trait polygenic score for cognition (cogPGS) with a quasi-experimental regression discontinuity design to isolate how months of schooling relate to intelligence in 6567 children (aged 9-11). We found large, independent effects of schooling (ß ~ 0.15), cogPGS (ß ~ 0.10), and SES (ß ~ 0.20) on working memory, crystallized (cIQ), and fluid intelligence (fIQ). Notably, two years of schooling had a larger effect on intelligence than the lifetime consequences, since birth, of SES or cogPGS-based inequalities. However, schooling showed no interaction with cogPGS or SES for the three intelligence domains tested. While schooling had strong main effects on intelligence, it did not lessen, nor widen the impact of these preexisting SES or genetic factors.

7.
Brain Stimul ; 15(6): 1439-1447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328341

RESUMEN

BACKGROUND: Using transcranial alternating current stimulation (tACS) to improve visuospatial working memory (vsWM) has received considerable attention over the past few years. However, fundamental issues remain, such as the optimal frequency, the generality of behavioral effects, and the anatomical specificity of stimulation. OBJECTIVES: Here we examined the effects of two theory-driven tACS protocols for improving vsWM on behavioral and electroencephalogram (EEG) measures. METHODS: Twenty adults each completed 3 HD-tACS conditions (Tuned, Slow, and Sham) on two separate days. The Tuned condition refers to a situation in which the frequency of tACS is tuned to individual theta peak measured during a vsWM task. By contrast, the frequency was fixed to 4 Hz in the Slow condition. A high-definition tACS was deployed to target smaller frontal and parietal regions for increasing their phase-locking values. During each tACS condition, participants performed vsWM, mental rotation (MR), and arithmetic tasks. Resting-state EEG (rs-EEG) was recorded before and after each condition. RESULTS: Compared with Sham, Tuned but not Slow improved both vsWM and MR but not arithmetics. The rs-EEG recording showed an increased fronto-parietal synchrony for Tuned, and this increase in synchronicity was correlated with the behavioral improvement. A follow-up study showed no behavioral improvement in Tuned with an anti-phase setting. CONCLUSION: We provide the first evidence that simulating right fronto-parietal network with the tuned frequency increases the interregional synchronicity and improves performance on two spatial tasks. The results provide insight into the structure of spatial abilities as well as suggestions for stimulating the fronto-parietal network.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Electroencefalografía , Estudios de Seguimiento , Memoria a Corto Plazo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos
8.
Sci Rep ; 12(1): 7720, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545630

RESUMEN

Digital media defines modern childhood, but its cognitive effects are unclear and hotly debated. We believe that studies with genetic data could clarify causal claims and correct for the typically unaccounted role of genetic predispositions. Here, we estimated the impact of different types of screen time (watching, socializing, or gaming) on children's intelligence while controlling for the confounding effects of genetic differences in cognition and socioeconomic status. We analyzed 9855 children from the USA who were part of the ABCD dataset with measures of intelligence at baseline (ages 9-10) and after two years. At baseline, time watching (r = - 0.12) and socializing (r = - 0.10) were negatively correlated with intelligence, while gaming did not correlate. After two years, gaming positively impacted intelligence (standardized ß = + 0.17), but socializing had no effect. This is consistent with cognitive benefits documented in experimental studies on video gaming. Unexpectedly, watching videos also benefited intelligence (standardized ß = + 0.12), contrary to prior research on the effect of watching TV. Although, in a posthoc analysis, this was not significant if parental education (instead of SES) was controlled for. Broadly, our results are in line with research on the malleability of cognitive abilities from environmental factors, such as cognitive training and the Flynn effect.


Asunto(s)
Inteligencia , Internet , Niño , Cognición , Humanos , Inteligencia/genética , Clase Social , Televisión
10.
Front Hum Neurosci ; 15: 698367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305556

RESUMEN

Spatial cognitive abilities, including mental rotation (MR) and visuo-spatial working memory (vsWM) are correlated with mathematical performance, and several studies have shown that training of these abilities can enhance mathematical performance. Here, we investigated the behavioral and neural correlates of MR and vsWM training combined with number line (NL) training. Fifty-seven children, aged 6-7, performed 25 days of NL training combined with either vsWM or MR and participated in an Electroencephalography (EEG)-session in school to measure resting state activity and steady-state visual evoked potentials during a vsWM task before and after training. Fifty children, aged 6-7, received usual teaching and acted as a control group. Compared to the control group, both training groups improved on a combined measure of mathematics. Cognitive improvement was specific to the training. Significant pre-post changes in resting state-EEG (rs-EEG), common to both training groups, were found for power as well as for coherence, with no significant differences in rs-EEG-changes between the vsWM and MR groups. Two of the common rs-EEG changes were correlated with mathematical improvement: (1) an increase in coherence between the central frontal lobe and the right parietal lobe in frequencies ranging from 16 to 25 Hz, and (2) an increase in coherence between the left frontal lobe and the right parietal lobe ranging from 23 to 25 Hz. These results indicate that changes in fronto-parietal coherence are related to an increase in mathematical performance, which thus might be a useful measure in further investigations of mathematical interventions in children.

11.
NPJ Sci Learn ; 6(1): 16, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078902

RESUMEN

The interplay of genetic and environmental factors behind cognitive development has preoccupied multiple fields of science and sparked heated debates over the decades. Here we tested the hypothesis that developmental genes rely heavily on cognitive challenges-as opposed to natural maturation. Starting with a polygenic score (cogPGS) that previously explained variation in cognitive performance in adults, we estimated its effect in 344 children and adolescents (mean age of 12 years old, ranging from 6 to 25) who showed changes in working memory (WM) in two distinct samples: (1) a developmental sample showing significant WM gains after 2 years of typical, age-related development, and (2) a training sample showing significant, experimentally-induced WM gains after 25 days of an intense WM training. We found that the same genetic factor, cogPGS, significantly explained the amount of WM gain in both samples. And there was no interaction of cogPGS with sample, suggesting that those genetic factors are neutral to whether the WM gains came from development or training. These results represent evidence that cognitive challenges are a central piece in the gene-environment interplay during cognitive development. We believe our study sheds new light on previous findings of interindividual differences in education (rich-get-richer and compensation effects), brain plasticity in children, and the heritability increase of intelligence across the lifespan.

12.
Nat Hum Behav ; 5(11): 1548-1554, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34017098

RESUMEN

Spatial and mathematical abilities are strongly associated. Here, we analysed data from 17,648 children, aged 6-8 years, who performed 7 weeks of mathematical training together with randomly assigned spatial cognitive training with tasks demanding more spatial manipulation (mental rotation or tangram), maintenance of spatial information (a visuospatial working memory task) or spatial, non-verbal reasoning. We found that the type of cognitive training children performed had a significant impact on mathematical learning, with training of visuospatial working memory and reasoning being the most effective. This large, community-based study shows that spatial cognitive training can result in transfer to academic abilities, and that reasoning ability and maintenance of spatial information is relevant for mathematics learning in young children.


Asunto(s)
Cognición , Aprendizaje , Matemática/educación , Navegación Espacial , Niño , Humanos , Memoria a Corto Plazo
13.
Cogn Neurosci ; 11(4): 229-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33040664

RESUMEN

Cognitive control is a pivotal aspect of cognition and it is impaired in many clinical populations. To date, several distinct types of cognitive control have been proposed, and prior work demonstrated the instrumental role of basal ganglia, frontal and parietal regions. However, the role of the structural variation of these regions in cognitive control functions is poorly understood. Here, we examined in 39 adults the association between regional brain volume and three major types of cognitive control: (i) stimulus updating, (ii) task-switching, and (iii) distractor filtering. The volume of the globus pallidus was positively correlated with individual variation in task-switching , and was anatomically specific to the left hemisphere. Importantly, this region did not track performance in distractor filtering or stimulus updating. We then aimed to use transcranial direct current stimulation to target the left midline subcortical structures. However, we did not find an effect on task-switching. While the null effect in the brain stimulation prevents us from drawing causal inference from the role of globus pallidus on task-switching, our structural results reveal a novel and highly specific neurostructural mechanism for task-switching and provide a further understanding of the link between cognitive control functions and the human brain.


Asunto(s)
Atención/fisiología , Función Ejecutiva/fisiología , Globo Pálido/anatomía & histología , Memoria a Corto Plazo/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Lateralidad Funcional/fisiología , Globo Pálido/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Placebos , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 117(22): 12411-12418, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32430323

RESUMEN

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Cognición , Escolaridad , Éxito Académico , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo , Herencia Multifactorial , Clase Social , Adulto Joven
15.
Neuropsychologia ; 143: 107486, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32437760

RESUMEN

Working memory, the ability to maintain and manipulate information over seconds, is central to cognition and it is impaired in many clinical populations. However, our knowledge of the structural properties associated with individual variation in visuospatial working memory capacity is currently poor. Across two locations (Stockholm and Oxford), we examined how regional surface area and cortical thickness in frontal and parietal regions were related to visuospatial working memory capacity. We found a negative association between visuospatial working memory capacity and the surface area of the left frontal pole across both locations, and this finding was consistently present in each of the two locations separately. Importantly, this association was specific to (i) the surface area (not cortical thickness), (ii) the left side of the brain, (iii) and the visuospatial rather than the verbal modality. This result reveals a novel and highly specific neurobiological association with visuospatial working memory which could be further explored in studies with a wider range of psychological tests and in clinical populations.


Asunto(s)
Lóbulo Frontal , Memoria a Corto Plazo , Cognición , Lóbulo Frontal/diagnóstico por imagen , Humanos , Lóbulo Parietal
16.
Cereb Cortex ; 30(2): 672-681, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31504278

RESUMEN

The striatum has long been associated with cognitive functions, but the mechanisms behind this are still unclear. Here we tested a new hypothesis that the striatum contributes to executive function (EF) by strengthening cortico-cortical connections. Striatal connectivity was evaluated by measuring the resting-state functional connectivity between ventral and dorsal striatum in 570 individuals, aged 3-20 years. Using structural equation modeling, we found that inter-individual differences in striatal connectivity had an indirect effect (via fronto-parietal functional connectivity) and a direct effect on a compound EF measure of working memory, inhibition, and set-shifting/flexibility. The effect of fronto-parietal connectivity on cognition did not depend on age: the influence was as strong in older as younger children. In contrast, striatal connectivity was closely related to changes in cognitive ability during childhood development, suggesting a specific role of the striatum in cognitive plasticity. These results support a new principle for striatal functioning, according to which striatum promotes cognitive development by strengthening of cortico-cortical connectivity.


Asunto(s)
Cuerpo Estriado/fisiología , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Individualidad , Lóbulo Parietal/fisiología , Adolescente , Adulto , Mapeo Encefálico , Niño , Preescolar , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Adulto Joven
17.
Alcohol Clin Exp Res ; 43(1): 135-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30462837

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is associated with cognitive deficits such as impaired executive functions, which are hypothesized to contribute to the progression of the disease and worsen treatment outcome. Training of working memory (WM) to improve cognitive functions and thereby reduce alcohol use has been proposed as a novel treatment strategy. METHODS: Patients with AUD (n = 50) who were recruited to an outpatient addiction clinic were randomized to receive 5 weeks of active WM training or control training. Participants had weekly follow-up visits, and all cognitive training sessions were done online at home. Primary outcomes were WM function and change in self-reported heavy drinking. Secondary outcomes were craving, other drinking outcomes, and performance on a range of neuropsychological tasks from the Cambridge Neuropsychological Test Automated Battery. RESULTS: The active training group demonstrated a significantly greater improvement in verbal WM compared with the control group. No statistically significant effect of training was found on the primary drinking outcome, but a trend was observed indicating that WM training reduces the number of drinks per drinking occasion. WM training had no statistically significant effect on any of the other neuropsychological tasks. CONCLUSIONS: Cognitive training can improve WM function in individuals with AUD, suggesting that such interventions are feasible to administer in this patient population. The results do not support an effect of WM training on heavy drinking or transfer effects to other cognitive domains. Future studies should evaluate WM training as an adjunct to evidence-based treatments for AUD to assess potential synergistic effects.


Asunto(s)
Alcoholismo/terapia , Aprendizaje , Memoria a Corto Plazo , Adolescente , Adulto , Consumo de Bebidas Alcohólicas/psicología , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas/estadística & datos numéricos , Resultado del Tratamiento , Adulto Joven
18.
Front Hum Neurosci ; 12: 465, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534064

RESUMEN

The adult brain contains cortical areas thought to be specialized for the analysis of numbers (the putative number form area, NFA) and letters (the visual word form area, VWFA). Although functional development of the VWFA has been investigated, it is largely unknown when and how the NFA becomes specialized and connected to the rest of the brain. One hypothesis is that NFA and VWFA derive their special functions through differential connectivity, but the development of this differential connectivity has not been shown. Here, we mapped the resting state connectivity of NFA and VWFA to the rest of the brain in a large sample (n = 437) of individuals (age 3.2-21 years). We show that within NFA-math network and within VWFA-reading network the strength of connectivity increases with age. The right NFA is significantly connected to the right intraparietal cortex already at the earliest age tested (age 3), before formal mathematical education has begun. This connection might support or enable an early understanding of magnitude or numerosity In contrast, the functional connectivity from NFA to the left anterior intraparietal cortex and to the right dorsolateral prefrontal cortex is not different from the functional connectivity of VWFA to these regions until around 12-14 years of age. The increase in connectivity to these regions was associated with a gradual increase in mathematical ability in an independent sample. In contrast, VWFA connects significantly to Broca's region around age 6, and this connectivity is correlated with reading ability. These results show how the differential connectivity of the networks for mathematics and reading slowly emerges through years of training and education.

19.
Neuroimage ; 173: 384-393, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29501552

RESUMEN

Most cortical areas send projections to the striatum. In some parts of the striatum, the connections converge from several cortical areas. It is unknown whether the convergence and non-convergence zones of the striatum differ functionally. Here, we used diffusion-weighted magnetic resonance imaging and probabilistic fiber tracking to parcellate the striatum based on its connections to dorsolateral prefrontal, parietal and orbitofrontal cortices in two different datasets (children aged 6-7 years and adults). In both samples, quantitative susceptibility mapping (QSM) values were significantly correlated with working memory (WM) in convergence zones, but not in non-convergence zones. In children, this was also true for mean diffusivity, MD. The association of MD to WM specifically in the convergent zone was replicated in the Pediatric Imaging, Neurocognition, and Genetics (PING) dataset for 135 children aged 6-9 years. QSM data was not available in the PING dataset, and the association to QSM still needs to be replicated. These results suggest that connectivity-based segments of the striatum exhibit functionally different characteristics. The association between convergence zones and WM performance might relate to a role in integrating and coordinating activity in different cortical areas.


Asunto(s)
Mapeo Encefálico/métodos , Cuerpo Estriado/fisiología , Vías Nerviosas/fisiología , Adulto , Niño , Cuerpo Estriado/anatomía & histología , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Masculino , Memoria a Corto Plazo/fisiología , Vías Nerviosas/anatomía & histología , Adulto Joven
20.
Front Psychol ; 8: 1342, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848464

RESUMEN

We investigate if increased physical activity (PA) leads to enhanced working memory capacity and arithmetic performance, in a 2-year school-based intervention in preadolescent children (age 6-13). The active school (n = 228) increased PA (aimed at increasing cardiovascular fitness) from 2 to 5 days a week while the control school (n = 242) remained at 2 days. Twice a year, participants performed tests of arithmetic as well as verbal and spatial working memory. They also rated stress with a questionnaire at the start and at the end of the intervention. There was no beneficial development of working memory or arithmetic for the active school as compared to the control school. Furthermore, subgroup analyses revealed no favorable intervention effect for high/low baseline fitness, cognition or grit. Unexpectedly, a significant increase in self-rated stress was detected for the active school and this effect was driven by girls rather than boys and by the younger rather than older children. These results indicate that longtime high intensity PA does not lead to a beneficial development of working memory or arithmetic in preadolescent children.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...