Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Mol Neurosci ; 15: 940484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311026

RESUMEN

The zebrafish is increasingly recognized as a model organism for translational research into human neuropathology. The zebrafish brain exhibits fundamental resemblance with human neuroanatomical and neurochemical pathways, and hallmarks of human brain pathology such as protein aggregation, neuronal degeneration and activation of glial cells, for example, can be modeled and recapitulated in the fish central nervous system. Genetic manipulation, imaging, and drug screening are areas where zebrafish excel with the ease of introducing mutations and transgenes, the expression of fluorescent markers that can be detected in vivo in the transparent larval stages overtime, and simple treatment of large numbers of fish larvae at once followed by automated screening and imaging. In this review, we summarize how zebrafish have successfully been employed to model human neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We discuss advantages and disadvantages of choosing zebrafish as a model for these neurodegenerative conditions.

3.
Nat Neurosci ; 25(4): 415-420, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165460

RESUMEN

Oligodendrocytes that survive demyelination can remyelinate, including in multiple sclerosis (MS), but how they do so is unclear. In this study, using zebrafish, we found that surviving oligodendrocytes make few new sheaths and frequently mistarget new myelin to neuronal cell bodies, a pathology we also found in MS. In contrast, oligodendrocytes generated after demyelination make abundant and correctly targeted sheaths, indicating that they likely also have a better regenerative potential in MS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Animales , Enfermedades Desmielinizantes/patología , Esclerosis Múltiple/patología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Regeneración , Pez Cebra
4.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32364583

RESUMEN

Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.


Asunto(s)
Axones/metabolismo , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Células de Schwann/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Proteínas de Pez Cebra/genética , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Axones/efectos de los fármacos , Axones/ultraestructura , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/patología , Células de Schwann/efectos de los fármacos , Células de Schwann/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Bloqueadores de los Canales de Sodio/toxicidad , Miembro 2 de la Familia de Transportadores de Soluto 12/deficiencia , Tetrodotoxina/toxicidad , Pez Cebra , Proteínas de Pez Cebra/deficiencia
5.
Dev Cell ; 51(6): 730-744.e6, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31761670

RESUMEN

Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo.


Asunto(s)
Sistema Nervioso Central/citología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/citología , Animales , Axones/metabolismo , Cuerpo Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Pez Cebra/metabolismo
6.
Methods Mol Biol ; 1936: 185-209, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820900

RESUMEN

Zebrafish are now well established as the preeminent vertebrate model with which to carry out gene discovery/forward genetic screens to identify the molecular genetic basis of biological processes. Gene discovery screens in zebrafish have already provided novel insight into mechanisms of glial cell development and function. The vast majority of genetic screens in zebrafish are based around a three generation screen that starts with the random induction of mutations in adult males using the chemical mutagen ENU. Here we outline the methods that underlie this type of screen, detailing each step, from ENU mutagenesis, through the breeding schemes required to recover homozygous mutant animals in subsequent generations, the screening procedure itself, with a focus on the analysis of myelinating glia, and the subsequent confirmation of mutant phenotypes.


Asunto(s)
Etilnitrosourea/efectos adversos , Pruebas Genéticas/métodos , Vaina de Mielina/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Cruzamiento , Femenino , Homocigoto , Masculino , Modelos Animales , Mutación , Fenotipo
7.
Curr Biol ; 28(8): 1296-1305.e5, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29628374

RESUMEN

The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting. In vitro, however, oligodendrocytes have an intrinsic propensity to myelinate [5-7] and can promiscuously wrap inert synthetic structures resembling neuronal processes [8, 9] or cell bodies [4]. A current therapeutic goal for the treatment of demyelinating diseases is to greatly promote oligodendrogenesis [10-13]; thus, it is important to test how accurately extrinsic signals regulate the oligodendrocyte's intrinsic program of myelination in vivo. Here, we test the hypothesis that neurons regulate myelination with sufficient stringency to always ensure correct targeting. Surprisingly, however, we find that myelin targeting in vivo is not very stringent and that mistargeting occurs readily when oligodendrocyte and myelin supply exceed axonal demand. We find that myelin is mistargeted to neuronal cell bodies in zebrafish mutants with fewer axons and independently in drug-treated zebrafish with increased oligodendrogenesis. Additionally, by increasing myelin production of oligodendrocytes in zebrafish and mice, we find that excess myelin is also inappropriately targeted to cell bodies. Our results suggest that balancing oligodendrocyte-intrinsic programs of myelin supply with axonal demand is essential for correct myelin targeting in vivo and highlight potential liabilities of strongly promoting oligodendrogenesis.


Asunto(s)
Cuerpo Celular/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/fisiología , Femenino , Masculino , Ratones , Vaina de Mielina/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Neuronas/fisiología , Oligodendroglía/metabolismo , Organogénesis/fisiología , Pez Cebra/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo
8.
Neuroscientist ; 24(1): 7-21, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28397586

RESUMEN

Approximately half of the human brain consists of myelinated axons. Central nervous system (CNS) myelin is made by oligodendrocytes and is essential for nervous system formation, health, and function. Once thought simply as a static insulator that facilitated rapid impulse conduction, myelin is now known to be made and remodeled in to adult life. Oligodendrocytes have a remarkable capacity to differentiate by default, but many aspects of their development can be influenced by axons. However, how axons and oligodendrocytes interact and cooperate to regulate myelination in the CNS remains unclear. Here, we review recent advances in our understanding of how such interactions generate the complexity of myelination known to exist in vivo. We highlight intriguing results that indicate that the cross-sectional size of an axon alone may regulate myelination to a surprising degree. We also review new studies, which have highlighted diversity in the myelination of axons of different neuronal subtypes and circuits, and structure-function relationships, which suggest that myelinated axons can be exquisitely fine-tuned to mediate precise conduction needs. We also discuss recent advances in our understanding of how neuronal activity regulates CNS myelination, and aim to provide an integrated overview of how axon-oligodendrocyte interactions sculpt neuronal circuit structure and function.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/fisiología , Vaina de Mielina/fisiología , Animales , Humanos
9.
Nat Genet ; 46(12): 1283-1292, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344692

RESUMEN

Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the genes encoding PLK4 kinase, a master regulator of centriole duplication, and its substrate TUBGCP6 in individuals with microcephalic primordial dwarfism and additional congenital anomalies, including retinopathy, thereby extending the human phenotypic spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenotypes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.


Asunto(s)
Trastornos del Crecimiento/genética , Microcefalia/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Degeneración Retiniana/genética , Adolescente , Adulto , Animales , Centriolos/ultraestructura , Niño , Preescolar , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Genotipo , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Repeticiones de Microsatélite , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Pakistán , Linaje , Fenotipo , Adulto Joven , Pez Cebra
10.
Genes Dev ; 25(19): 2011-24, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21979914

RESUMEN

The greatest difference between species is size; however, the developmental mechanisms determining organism growth remain poorly understood. Primordial dwarfism is a group of human single-gene disorders with extreme global growth failure (which includes Seckel syndrome, microcephalic osteodysplastic primordial dwarfism I [MOPD] types I and II, and Meier-Gorlin syndrome). Ten genes have now been identified for microcephalic primordial dwarfism, encoding proteins involved in fundamental cellular processes including genome replication (ORC1 [origin recognition complex 1], ORC4, ORC6, CDT1, and CDC6), DNA damage response (ATR [ataxia-telangiectasia and Rad3-related]), mRNA splicing (U4atac), and centrosome function (CEP152, PCNT, and CPAP). Here, we review the cellular and developmental mechanisms underlying the pathogenesis of these conditions and address whether further study of these genes could provide novel insight into the physiological regulation of organism growth.


Asunto(s)
Enanismo/genética , Enanismo/fisiopatología , Crecimiento y Desarrollo/genética , Animales , Tamaño Corporal , Proliferación Celular , Humanos , Mutación
11.
Development ; 138(13): 2705-15, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21613323

RESUMEN

Fibroblast growth factor (FGF)-dependent epithelial-mesenchymal transitions and cell migration contribute to the establishment of germ layers in vertebrates and other animals, but a comprehensive demonstration of the cellular activities that FGF controls to mediate these events has not been provided for any system. The establishment of the Drosophila mesoderm layer from an epithelial primordium involves a transition to a mesenchymal state and the dispersal of cells away from the site of internalisation in a FGF-dependent fashion. We show here that FGF plays multiple roles at successive stages of mesoderm morphogenesis in Drosophila. It is first required for the mesoderm primordium to lose its epithelial polarity. An intimate, FGF-dependent contact is established and maintained between the germ layers through mesoderm cell protrusions. These protrusions extend deep into the underlying ectoderm epithelium and are associated with high levels of E-cadherin at the germ layer interface. Finally, FGF directs distinct hitherto unrecognised and partially redundant protrusive behaviours during later mesoderm spreading. Cells first move radially towards the ectoderm, and then switch to a dorsally directed movement across its surface. We show that both movements are important for layer formation and present evidence suggesting that they are controlled by genetically distinct mechanisms.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Transducción de Señal/fisiología , Animales , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Ectodermo/citología , Ectodermo/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Gastrulación/genética , Gastrulación/fisiología , Inmunohistoquímica , Transducción de Señal/genética , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
12.
Nat Genet ; 43(4): 350-5, 2011 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-21358633

RESUMEN

Studies into disorders of extreme growth failure (for example, Seckel syndrome and Majewski osteodysplastic primordial dwarfism type II) have implicated fundamental cellular processes of DNA damage response signaling and centrosome function in the regulation of human growth. Here we report that mutations in ORC1, encoding a subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier-Gorlin syndrome. We establish that these mutations disrupt known ORC1 functions including pre-replicative complex formation and origin activation. ORC1 deficiency perturbs S-phase entry and S-phase progression. Additionally, we show that Orc1 depletion in zebrafish is sufficient to markedly reduce body size during rapid embryonic growth. Our data suggest a model in which ORC1 mutations impair replication licensing, slowing cell cycle progression and consequently impeding growth during development, particularly at times of rapid proliferation. These findings establish a novel mechanism for the pathogenesis of microcephalic dwarfism and show a surprising but important developmental impact of impaired origin licensing.


Asunto(s)
Enanismo/genética , Microcefalia/genética , Mutación Missense , Complejo de Reconocimiento del Origen/genética , Adolescente , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Niño , Preescolar , Microtia Congénita , Consanguinidad , ADN/genética , Oído/anomalías , Femenino , Estudio de Asociación del Genoma Completo , Trastornos del Crecimiento/genética , Humanos , Lactante , Masculino , Micrognatismo/genética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/deficiencia , Rótula/anomalías , Linaje , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Fase S/genética , Arabia Saudita , Homología de Secuencia de Aminoácido , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
13.
Development ; 136(14): 2393-402, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19515694

RESUMEN

Thisbe (Ths) and Pyramus (Pyr), two closely related Drosophila homologues of the vertebrate fibroblast growth factor (FGF) 8/17/18 subfamily, are ligands for the FGF receptor Heartless (Htl). Both ligands are required for mesoderm development, but their differential expression patterns suggest distinct functions during development. We generated single mutants and found that ths or pyr loss-of-function mutations are semi-lethal and mutants exhibit much weaker phenotypes as compared with loss of both ligands or htl. Thus, pyr and ths display partial redundancy in their requirement in embryogenesis and viability. Nevertheless, we find that pyr and ths single mutants display defects in gastrulation and mesoderm differentiation. We show that localised expression of pyr is required for normal cell protrusions and high levels of MAPK activation in migrating mesoderm cells. The results support the model that Pyr acts as an instructive cue for mesoderm migration during gastrulation. Consistent with this function, mutations in pyr affect the normal segmental number of cardioblasts. Furthermore, Pyr is essential for the specification of even-skipped-positive mesodermal precursors and Pyr and Ths are both required for the specification of a subset of somatic muscles. The results demonstrate both independent and overlapping functions of two FGF8 homologues in mesoderm morphogenesis and differentiation. We propose that the integration of Pyr and Ths function is required for robustness of Htl-dependent mesoderm spreading and differentiation, but that the functions of Pyr have become more specific, possibly representing an early stage of functional divergence after gene duplication of a common ancestor.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Animales , Animales Modificados Genéticamente , Movimiento Celular/genética , Movimiento Celular/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Factor 8 de Crecimiento de Fibroblastos/genética , Gastrulación/genética , Gastrulación/fisiología , Genes de Insecto , Ligandos , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Biológicos , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Mutación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...