Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Cell Genom ; : 100566, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38788713

RESUMEN

Meningiomas, although mostly benign, can be recurrent and fatal. World Health Organization (WHO) grading of the tumor does not always identify high-risk meningioma, and better characterizations of their aggressive biology are needed. To approach this problem, we combined 13 bulk RNA sequencing (RNA-seq) datasets to create a dimension-reduced reference landscape of 1,298 meningiomas. The clinical and genomic metadata effectively correlated with landscape regions, which led to the identification of meningioma subtypes with specific biological signatures. The time to recurrence also correlated with the map location. Further, we developed an algorithm that maps new patients onto this landscape, where the nearest neighbors predict outcome. This study highlights the utility of combining bulk transcriptomic datasets to visualize the complexity of tumor populations. Further, we provide an interactive tool for understanding the disease and predicting patient outcomes. This resource is accessible via the online tool Oncoscape, where the scientific community can explore the meningioma landscape.

3.
J Neurooncol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811523

RESUMEN

PURPOSE: Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. METHODS: Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (n = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. RESULTS: While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (n = 711 samples). CONCLUSION: Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.

5.
Nat Med ; 29(12): 3067-3076, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944590

RESUMEN

Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Biomarcadores , Perfilación de la Expresión Génica , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/radioterapia , Neoplasias Meníngeas/patología , Meningioma/genética , Meningioma/radioterapia , Meningioma/patología , Recurrencia Local de Neoplasia/patología , Estudios Prospectivos
6.
J Neurooncol ; 163(2): 397-405, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37318677

RESUMEN

INTRODUCTION: Meningiomas are the most common primary intracranial tumor. Recently, various genetic classification systems for meningioma have been described. We sought to identify clinical drivers of different molecular changes in meningioma. As such, clinical and genomic consequences of smoking in patients with meningiomas remain unexplored. METHODS: 88 tumor samples were analyzed in this study. Whole exome sequencing (WES) was used to assess somatic mutation burden. RNA sequencing data was used to identify differentially expressed genes (DEG) and genes sets (GSEA). RESULTS: Fifty-seven patients had no history of smoking, twenty-two were past smokers, and nine were current smokers. The clinical data showed no major differences in natural history across smoking status. WES revealed absence of AKT1 mutation rate in current or past smokers compared to non-smokers (p = 0.046). Current smokers had increased mutation rate in NOTCH2 compared to past and never smokers (p < 0.05). Mutational signature from current and past smokers showed disrupted DNA mismatch repair (cosine-similarity = 0.759 and 0.783). DEG analysis revealed the xenobiotic metabolic genes UGT2A1 and UGT2A2 were both significantly downregulated in current smokers compared to past (Log2FC = - 3.97, padj = 0.0347 and Log2FC = - 4.18, padj = 0.0304) and never smokers (Log2FC = - 3.86, padj = 0.0235 and Log2FC = - 4.20, padj = 0.0149). GSEA analysis of current smokers showed downregulation of xenobiotic metabolism and enrichment for G2M checkpoint, E2F targets, and mitotic spindle compared to past and never smokers (FDR < 25% each). CONCLUSION: In this study, we conducted a comparative analysis of meningioma patients based on their smoking history, examining both their clinical trajectories and molecular changes. Meningiomas from current smokers were more likely to harbor NOTCH2 mutations, and AKT1 mutations were absent in current or past smokers. Moreover, both current and past smokers exhibited a mutational signature associated with DNA mismatch repair. Meningiomas from current smokers demonstrate downregulation of xenobiotic metabolic enzymes UGT2A1 and UGT2A2, which are downregulated in other smoking related cancers. Furthermore, current smokers exhibited downregulation xenobiotic metabolic gene sets, as well as enrichment in gene sets related to mitotic spindle, E2F targets, and G2M checkpoint, which are hallmark pathways involved in cell division and DNA replication control. In aggregate, our results demonstrate novel alterations in meningioma molecular biology in response to systemic carcinogens.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/genética , Meningioma/patología , Xenobióticos , Fumar/efectos adversos , Fumar/genética , Mutación , Genómica , Neoplasias Meníngeas/patología , Glucuronosiltransferasa/genética
8.
BMC Genomics ; 23(1): 841, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539717

RESUMEN

BACKGROUND: RNA-sequencing has become a standard tool for analyzing gene activity in bulk samples and at the single-cell level. By increasing sample sizes and cell counts, this technique can uncover substantial information about cellular transcriptional states. Beyond quantification of gene expression, RNA-seq can be used for detecting variants, including single nucleotide polymorphisms, small insertions/deletions, and larger variants, such as copy number variants. Notably, joint analysis of variants with cellular transcriptional states may provide insights into the impact of mutations, especially for complex and heterogeneous samples. However, this analysis is often challenging due to a prohibitively high number of variants and cells, which are difficult to summarize and visualize. Further, there is a dearth of methods that assess and summarize the association between detected variants and cellular transcriptional states. RESULTS: Here, we introduce XCVATR (eXpressed Clusters of Variant Alleles in Transcriptome pRofiles), a method that identifies variants and detects local enrichment of expressed variants within embedding of samples and cells in single-cell and bulk RNA-seq datasets. XCVATR visualizes local "clumps" of small and large-scale variants and searches for patterns of association between each variant and cellular states, as described by the coordinates of cell embedding, which can be computed independently using any type of distance metrics, such as principal component analysis or t-distributed stochastic neighbor embedding. Through simulations and analysis of real datasets, we demonstrate that XCVATR can detect enrichment of expressed variants and provide insight into the transcriptional states of cells and samples. We next sequenced 2 new single cell RNA-seq tumor samples and applied XCVATR. XCVATR revealed subtle differences in CNV impact on tumors. CONCLUSIONS: XCVATR is publicly available to download from https://github.com/harmancilab/XCVATR .


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Transcriptoma , RNA-Seq , Análisis de Secuencia de ARN/métodos , ARN/genética , Análisis de la Célula Individual/métodos
9.
Sci Adv ; 8(5): eabm6247, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35108039

RESUMEN

One-fifth of meningiomas classified as benign by World Health Organization (WHO) histopathological grading will behave malignantly. To better diagnose these tumors, several groups turned to DNA methylation, whereas we combined RNA-sequencing (RNA-seq) and cytogenetics. Both approaches were more accurate than histopathology in identifying aggressive tumors, but whether they revealed similar tumor types was unclear. We therefore performed unbiased DNA methylation, RNA-seq, and cytogenetic profiling on 110 primary meningiomas WHO grade I and II). Each technique distinguished the same three groups (two benign and one malignant) as our previous molecular classification; integrating these methods into one classifier further improved accuracy. Computational modeling revealed strong correlations between transcription and cytogenetic changes, particularly loss of chromosome 1p, in malignant tumors. Applying our classifier to data from previous studies also resolved certain anomalies entailed by grouping tumors by WHO grade. Accurate classification will therefore elucidate meningioma biology as well as improve diagnosis and prognosis.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Metilación de ADN , Humanos , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Meningioma/diagnóstico , Meningioma/genética , Meningioma/patología , Extractos Vegetales , Pronóstico
10.
J Neurosurg ; : 1-10, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35099915

RESUMEN

OBJECTIVE: Meningiomas are the most common primary intracranial tumor. Seizures are common sequelae of meningioma development. Meningioma patients with seizures can be effectively treated with resection, with reports of seizure freedom of 60%-90%. Still, many patients manifest persistent epilepsy. Determining factors associated with worsened seizure outcomes remains critical in improving the quality of life for these patients. The authors sought to identify clinical, radiological, and histological factors associated with worse seizure outcomes in patients with supratentorial meningioma and preoperative seizures. METHODS: The authors retrospectively reviewed the charts of 384 patients who underwent meningioma resection from 2008 to 2020. The charts of patients with a documented history of preoperative seizures were further reviewed for clinical, radiological, operative, perioperative, histological, and postoperative factors associated with seizures. Engel class at last follow-up was retrospectively assigned by the authors and further grouped into favorable (class I) and worse (class II-IV) outcomes. Factors were subsequently compared by group using comparative statistics. Univariable and multivariable regression models were utilized to identify independent predictors of worse seizure outcome. RESULTS: Fifty-nine patients (15.4%) were found to have preoperative seizures, of whom 57 had sufficient postoperative data to determine Engel class outcome. Forty-two patients (74%) had Engel class I outcomes. The median follow-up was 17 months. Distinct margins on preoperative imaging (p = 0.012), Simpson grade I resection (p = 0.004), postresection ischemia (p = 0.019), WHO grade (p = 0.019), and recurrent disease (p = 0.015) were found to be the strongest predictors of Engel class outcome in univariable logistic regression. MIB-1 index (p = 0.001) and residual volume (p = 0.014) at last follow-up were found to be the strongest predictors of Engel class outcome in univariable generalized linear regression. Postresection ischemia (p = 0.012), WHO grade (p = 0.022), recurrent disease (p = 0.038), and MIB-1 index (p = 0.002) were found to be the strongest independent predictors of Engel class outcomes in multivariable analysis. CONCLUSIONS: Postresection ischemia, higher WHO grade, elevated MIB-1 index, and disease recurrence independently predict postresection seizure persistence in patients with supratentorial meningioma. Further understanding of the etiology of these markers may aid in elucidation of this complex disease process and guide management to prevent worse outcomes.

11.
J Neurooncol ; 149(2): 219-230, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32949309

RESUMEN

INTRODUCTION: Meningiomas are the most common primary intracranial tumor. Recent next generation sequencing analyses have elaborated the molecular drivers of this disease. We aimed to identify and characterize novel fusion genes in meningiomas. METHODS: We performed a secondary analysis of our RNA sequencing data of 145 primary meningioma from 140 patients to detect fusion genes. Semi-quantitative rt-PCR was performed to confirm transcription of the fusion genes in the original tumors. Whole exome sequencing was performed to identify copy number variations within each tumor sample. Comparative RNA seq analysis was performed to assess the clonality of the fusion constructs within the tumor. RESULTS: We detected six fusion events (NOTCH3-SETBP1, NF2-SPATA13, SLC6A3-AGBL3, PHF19-FOXP2 in two patients, and ITPK1-FBP2) in five out of 145 tumor samples. All but one event (NF2-SPATA13) led to extremely short reading frames, making these events de facto null alleles. Three of the five patients had a history of childhood radiation. Four out of six fusion events were detected in expression type C tumors, which represent the most aggressive meningioma. We validated the presence of the RNA transcripts in the tumor tissue by semi-quantitative RT PCR. All but the two PHF19-FOXP2 fusions demonstrated high degrees of clonality. CONCLUSIONS: Fusion genes occur infrequently in meningiomas and are more likely to be found in tumors with greater degree of genomic instability (expression type C) or in patients with history of cranial irradiation.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Mutación , Proteínas de Fusión Oncogénica/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Pronóstico
12.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517016

RESUMEN

BACKGROUND: Meningiomas constitute one-third of all primary brain tumors. Although typically benign, about 20% of these tumors recur despite surgery and radiation, and may ultimately prove fatal. There are currently no effective chemotherapies for meningioma. We, therefore, set out to develop patient-derived orthotopic xenograft (PDOX) mouse models of human meningioma using tumor. METHOD: Of nine patients, four had World Health Organization (WHO) grade I tumors, five had WHO grade II tumors, and in this second group two patients also had recurrent (WHO grade III) meningioma. We also classified the tumors according to our recently developed molecular classification system (Types A, B, and C, with C being the most aggressive). We transplanted all 11 surgical samples into the skull base of immunodeficient (SCID) mice. Only the primary and recurrent tumor cells from one patient-both molecular Type C, despite being WHO grades II and III, respectively-led to the formation of meningioma in the resulting mouse models. We characterized the xenografts by histopathology and RNA-seq and compared them with the original tumors. We performed an in vitro drug screen using 60 anti-cancer drugs followed by in vivo validation. RESULTS: The PDOX models established from the primary and recurrent tumors from patient K29 (K29P-PDOX and K29R-PDOX, respectively) replicated the histopathology and key gene expression profiles of the original samples. Although these xenografts could not be subtransplanted, the cryopreserved primary tumor cells were able to reliably generate PDOX tumors. Drug screening in K29P and K29R tumor cell lines revealed eight compounds that were active on both tumors, including three histone deacetylase (HDAC) inhibitors. We tested the HDAC inhibitor Panobinostat in K29R-PDOX mice, and it significantly prolonged mouse survival (p < 0.05) by inducing histone H3 acetylation and apoptosis. CONCLUSION: Meningiomas are not very amenable to PDOX modeling, for reasons that remain unclear. Yet at least some of the most malignant tumors can be modeled, and cryopreserved primary tumor cells can create large panels of tumors that can be used for preclinical drug testing.

13.
Nat Commun ; 11(1): 2461, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424153

RESUMEN

It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Linaje de la Célula , Hígado/citología , Hígado/fisiología , Regeneración/fisiología , Animales , Neoplasias de los Conductos Biliares/patología , Conductos Biliares/metabolismo , Diferenciación Celular , Proliferación Celular , Colangiocarcinoma/patología , Regulación hacia Abajo/genética , Hepatocitos/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Esferoides Celulares/citología , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética
14.
Proc Natl Acad Sci U S A ; 116(43): 21715-21726, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591222

RESUMEN

Meningiomas account for one-third of all primary brain tumors. Although typically benign, about 20% of meningiomas are aggressive, and despite the rigor of the current histopathological classification system there remains considerable uncertainty in predicting tumor behavior. Here, we analyzed 160 tumors from all 3 World Health Organization (WHO) grades (I through III) using clinical, gene expression, and sequencing data. Unsupervised clustering analysis identified 3 molecular types (A, B, and C) that reliably predicted recurrence. These groups did not directly correlate with the WHO grading system, which classifies more than half of the tumors in the most aggressive molecular type as benign. Transcriptional and biochemical analyses revealed that aggressive meningiomas involve loss of the repressor function of the DREAM complex, which results in cell-cycle activation; only tumors in this category tend to recur after full resection. These findings should improve our ability to predict recurrence and develop targeted treatments for these clinically challenging tumors.


Asunto(s)
Proteínas de Interacción con los Canales Kv/genética , Neoplasias Meníngeas/genética , Meningioma/genética , Recurrencia Local de Neoplasia/genética , Proteínas Represoras/genética , Adulto , Anciano , Anciano de 80 o más Años , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , Persona de Mediana Edad , Pronóstico , Adulto Joven
15.
Cancers (Basel) ; 11(11)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652973

RESUMEN

Mutations in the neurofibromin 2 (NF2) gene were among the first genetic alterations implicated in meningioma tumorigenesis, based on analysis of neurofibromatosis type 2 (NF2) patients who not only develop vestibular schwannomas but later have a high incidence of meningiomas. The NF2 gene product, merlin, is a tumor suppressor that is thought to link the actin cytoskeleton with plasma membrane proteins and mediate contact-dependent inhibition of proliferation. However, the early recognition of the crucial role of NF2 mutations in the pathogenesis of the majority of meningiomas has not yet translated into useful clinical insights, due to the complexity of merlin's many interacting partners and signaling pathways. Next-generation sequencing studies and increasingly sophisticated NF2-deletion-based in vitro and in vivo models have helped elucidate the consequences of merlin loss in meningioma pathogenesis. In this review, we seek to summarize recent findings and provide future directions toward potential therapeutics for this tumor.

16.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31126958

RESUMEN

Autophagy and energy metabolism are known to follow a circadian pattern. However, it is unclear whether autophagy and the circadian clock are coordinated by common control mechanisms. Here, we show that the oscillation of autophagy genes is dependent on the nutrient-sensitive activation of TFEB and TFE3, key regulators of autophagy, lysosomal biogenesis, and cell homeostasis. TFEB and TFE3 display a circadian activation over the 24-h cycle and are responsible for the rhythmic induction of genes involved in autophagy during the light phase. Genetic ablation of TFEB and TFE3 in mice results in deregulated autophagy over the diurnal cycle and altered gene expression causing abnormal circadian wheel-running behavior. In addition, TFEB and TFE3 directly regulate the expression of Rev-erbα (Nr1d1), a transcriptional repressor component of the core clock machinery also involved in the regulation of whole-body metabolism and autophagy. Comparative analysis of the cistromes of TFEB/TFE3 and REV-ERBα showed an extensive overlap of their binding sites, particularly in genes involved in autophagy and metabolic functions. These data reveal a direct link between nutrient and clock-dependent regulation of gene expression shedding a new light on the crosstalk between autophagy, metabolism, and circadian cycles.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Relojes Circadianos , Metabolismo Energético , Nutrientes/fisiología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Sitios de Unión , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/fisiología , Nutrientes/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/fisiología
17.
World Neurosurg ; 127: 58-62, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30878749

RESUMEN

BACKGROUND: Optic pathway gliomas (OPGs) are relatively rare, and their presentation after the first decade of life is even less common. Although many treatment options exist, surgery is typically reserved for tumors significantly compressing surrounding structures. Pregnancy can complicate the management of these tumors, as fetal developmental considerations limit the ways in which they are imaged and treated. CASE DESCRIPTION: In this report we detail the case of a 27-year-old pregnant woman who was found to have an OPG during her third trimester. After a decline in this patient's vision and clinical status, a decision was made to induce labor at 31 weeks so that her disease could be more thoroughly addressed. CONCLUSIONS: While OPGs are typically benign tumors, pregnancy complicates their management significantly. Contrast media and anesthesia pose significant risks to the fetus, while pregnancy may contribute to increased rates of tumor growth and clinical deterioration. Managing OPGs in pregnant patients thus requires balancing the risks to the fetus and patient.


Asunto(s)
Glioma del Nervio Óptico/diagnóstico , Glioma del Nervio Óptico/cirugía , Neoplasias del Nervio Óptico/diagnóstico , Neoplasias del Nervio Óptico/cirugía , Adulto , Femenino , Humanos , Glioma del Nervio Óptico/complicaciones , Neoplasias del Nervio Óptico/complicaciones , Embarazo , Complicaciones del Embarazo , Tercer Trimestre del Embarazo , Resultado del Tratamiento , Trastornos de la Visión/etiología
18.
Elife ; 62017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29168692

RESUMEN

Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with long-term survival as low as 50-60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in tumors after their development is beneficial, we studied Atoh1 dosage and modifications in Shh-type medulloblastoma. Heterozygosity of Atoh1 reduced tumor occurrence and prolonged survival. We discovered tyrosine 78 of Atoh1 is phosphorylated by a Jak2-mediated pathway only in tumor-initiating cells and in human SHH-type medulloblastoma. Phosphorylation of tyrosine 78 stabilizes Atoh1, increases Atoh1's transcriptional activity, and is independent of canonical Jak2 signaling. Importantly, inhibition of Jak2 impairs tyrosine 78 phosphorylation and tumor growth in vivo. Taken together, inhibiting Jak2-mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis , Janus Quinasa 2/metabolismo , Meduloblastoma/patología , Meduloblastoma/fisiopatología , Procesamiento Proteico-Postraduccional , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Fosforilación
19.
Sci Transl Med ; 9(404)2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28835516

RESUMEN

Alterations in gene dosage due to copy number variation are associated with autism spectrum disorder, intellectual disability (ID), and other psychiatric disorders. The nervous system is so acutely sensitive to the dose of methyl-CpG-binding protein 2 (MeCP2) that even a twofold change in MeCP2 protein-either increased or decreased-results in distinct disorders with overlapping features including ID, autistic behavior, and severe motor dysfunction. Rett syndrome is caused by loss-of-function mutations in MECP2, whereas duplications spanning the MECP2 locus result in MECP2 duplication syndrome (MDS), which accounts for ~1% of X-linked ID. Despite evidence from mouse models that restoring MeCP2 can reverse the course of disease, there are currently no U.S. Food and Drug Administration-approved therapies available to clinically modulate MeCP2 abundance. We used a forward genetic screen against all known human kinases and phosphatases to identify druggable regulators of MeCP2 stability. Two putative modulators of MeCP2, HIPK2 (homeodomain-interacting protein kinase 2) and PP2A (protein phosphatase 2A), were validated as stabilizers of MeCP2 in vivo. Further, pharmacological inhibition of PP2A in vivo reduced MeCP2 in the nervous system and rescued both overexpression and motor abnormalities in a mouse model of MDS. Our findings reveal potential therapeutic targets for treating disorders of altered MECP2 dosage.


Asunto(s)
Pruebas Genéticas , Proteína 2 de Unión a Metil-CpG/metabolismo , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Reproducibilidad de los Resultados
20.
J Neurosci ; 37(36): 8583-8594, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28729444

RESUMEN

Atonal homolog 1 (Atoh1) is a basic helix-loop-helix (bHLH) transcription factor that is essential for the genesis, survival, and maturation of a variety of neuronal and non-neuronal cell populations, including those involved in proprioception, interoception, balance, respiration, and hearing. Such diverse functions require fine regulation at the transcriptional and protein levels. Here, we show that serine 193 (S193) is phosphorylated in Atoh1's bHLH domain in vivo Knock-in mice of both sexes bearing a GFP-tagged phospho-dead S193A allele on a null background (Atoh1S193A/lacZ) exhibit mild cerebellar foliation defects, motor impairments, partial pontine nucleus migration defects, cochlear hair cell degeneration, and profound hearing loss. We also found that Atoh1 heterozygous mice of both sexes (Atoh1lacZ/+) have adult-onset deafness. These data indicate that different cell types have different degrees of vulnerability to loss of Atoh1 function and that hypomorphic Atoh1 alleles should be considered in human hearing loss.SIGNIFICANCE STATEMENT The discovery that Atonal homolog 1 (Atoh1) governs the development of the sensory hair cells in the inner ear led to therapeutic efforts to restore these cells in cases of human deafness. Because prior studies of Atoh1-heterozygous mice did not examine or report on hearing loss in mature animals, it has not been clinical practice to sequence ATOH1 in people with deafness. Here, in seeking to understand how phosphorylation of Atoh1 modulates its effects in vivo, we discovered that inner ear hair cells are much more vulnerable to loss of Atoh1 function than other Atoh1-positive cell types and that heterozygous mice actually develop hearing loss late in life. This opens up the possibility that missense mutations in ATOH1 could increase human vulnerability to loss of hair cells because of aging or trauma.


Asunto(s)
Envejecimiento/genética , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Predisposición Genética a la Enfermedad/genética , Células Ciliadas Auditivas/patología , Pérdida Auditiva/genética , Trastornos del Movimiento/genética , Envejecimiento/patología , Animales , Femenino , Técnicas de Sustitución del Gen , Pérdida Auditiva/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos del Movimiento/patología , Mutación Missense/genética , Serina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...