Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682582

RESUMEN

Senescent cells can influence the function of tissues in which they reside, and their propensity for disease. A portion of adult human pancreatic beta cells express the senescence marker p16, yet it is unclear whether they are in a senescent state, and how this affects insulin secretion. We analyzed single-cell transcriptome datasets of adult human beta cells, and found that p16-positive cells express senescence gene signatures, as well as elevated levels of beta-cell maturation genes, consistent with enhanced functionality. Senescent human beta-like cells in culture undergo chromatin reorganization that leads to activation of enhancers regulating functional maturation genes and acquisition of glucose-stimulated insulin secretion capacity. Strikingly, Interferon-stimulated genes are elevated in senescent human beta cells, but genes encoding senescence-associated secretory phenotype (SASP) cytokines are not. Senescent beta cells in culture and in human tissue show elevated levels of cytoplasmic DNA, contributing to their increased interferon responsiveness. Human beta-cell senescence thus involves chromatin-driven upregulation of a functional-maturation program, and increased responsiveness of interferon-stimulated genes, changes that could increase both insulin secretion and immune reactivity.

2.
Diabetes ; 73(4): 554-564, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266068

RESUMEN

Assessment of pancreas cell type composition is crucial to the understanding of the genesis of diabetes. Current approaches use immunodetection of protein markers, for example, insulin as a marker of ß-cells. A major limitation of these methods is that protein content varies in physiological and pathological conditions, complicating the extrapolation to actual cell number. Here, we demonstrate the use of cell type-specific DNA methylation markers for determining the fraction of specific cell types in human islet and pancreas specimens. We identified genomic loci that are uniquely demethylated in specific pancreatic cell types and applied targeted PCR to assess the methylation status of these loci in tissue samples, enabling inference of cell type composition. In islet preparations, normalization of insulin secretion to ß-cell DNA revealed similar ß-cell function in pre-type 1 diabetes (T1D), T1D, and type 2 diabetes (T2D), which was significantly lower than in donors without diabetes. In histological pancreas specimens from recent-onset T1D, this assay showed ß-cell fraction within the normal range, suggesting a significant contribution of ß-cell dysfunction. In T2D pancreata, we observed increased α-cell fraction and normal ß-cell fraction. Methylation-based analysis provides an accurate molecular alternative to immune detection of cell types in the human pancreas, with utility in the interpretation of insulin secretion assays and the assessment of pancreas cell composition in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagón , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Metilación de ADN , Páncreas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagón/metabolismo
3.
Cell Metab ; 36(1): 48-61.e6, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38128529

RESUMEN

A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones , Animales , Humanos , Edición de ARN , ARN Bicatenario , Interferones/genética , Interferones/metabolismo , Inflamación
4.
Cell Rep ; 42(12): 113457, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995187

RESUMEN

While programmed cell death plays important roles during morphogenetic stages of development, post-differentiation organ growth is considered an efficient process whereby cell proliferation increases cell number. Here we demonstrate that early postnatal growth of the pancreas unexpectedly involves massive acinar cell elimination. Measurements of cell proliferation and death in the human pancreas in comparison to the actual increase in cell number predict daily elimination of 0.7% of cells, offsetting 88% of cell formation over the first year of life. Using mouse models, we show that death is associated with mitosis, through a failure of dividing cells to generate two viable daughters. In p53-deficient mice, acinar cell death and proliferation are reduced, while organ size is normal, suggesting that p53-dependent developmental apoptosis triggers compensatory proliferation. We propose that excess cell turnover during growth of the pancreas, and presumably other organs, facilitates robustness to perturbations and supports maintenance of tissue architecture.


Asunto(s)
Células Acinares , Proteína p53 Supresora de Tumor , Animales , Ratones , Humanos , Células Acinares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Páncreas/metabolismo , Diferenciación Celular , Apoptosis/fisiología
5.
Nat Commun ; 14(1): 7542, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985773

RESUMEN

Circulating cell-free DNA (cfDNA) fragments are a biological analyte with extensive utility in diagnostic medicine. Understanding the source of cfDNA and mechanisms of release is crucial for designing and interpreting cfDNA-based liquid biopsy assays. Using cell type-specific methylation markers as well as genome-wide methylation analysis, we determine that megakaryocytes, the precursors of anuclear platelets, are major contributors to cfDNA (~26%), while erythroblasts contribute 1-4% of cfDNA in healthy individuals. Surprisingly, we discover that platelets contain genomic DNA fragments originating in megakaryocytes, contrary to the general understanding that platelets lack genomic DNA. Megakaryocyte-derived cfDNA is increased in pathologies involving increased platelet production (Essential Thrombocythemia, Idiopathic Thrombocytopenic Purpura) and decreased upon reduced platelet production due to chemotherapy-induced bone marrow suppression. Similarly, erythroblast cfDNA is reflective of erythrocyte production and is elevated in patients with thalassemia. Megakaryocyte- and erythroblast-specific DNA methylation patterns can thus serve as biomarkers for pathologies involving increased or decreased thrombopoiesis and erythropoiesis, which can aid in determining the etiology of aberrant levels of erythrocytes and platelets.


Asunto(s)
Ácidos Nucleicos Libres de Células , Megacariocitos , Humanos , Trombopoyesis , Eritropoyesis/genética , Ácidos Nucleicos Libres de Células/genética , Plaquetas , Eritroblastos , ADN
6.
Med ; 4(4): 263-281.e4, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37060900

RESUMEN

BACKGROUND: Vascular endothelial cells (VECs) are an essential component of each tissue, contribute to multiple pathologies, and are targeted by important drugs. Yet, there is a shortage of biomarkers to assess VEC turnover. METHODS: To develop DNA methylation-based liquid biopsies for VECs, we determined the methylome of VECs isolated from freshly dissociated human tissues. FINDINGS: A comparison with a human cell-type methylome atlas yielded thousands of loci that are uniquely unmethylated in VECs. These sites are typically gene enhancers, often residing adjacent to VEC-specific genes. We also identified hundreds of genomic loci that are differentially methylated in organotypic VECs, indicating that VECs feeding specific organs are distinct cell types with a stable epigenetic identity. We established universal and lung-specific VEC markers and evaluated their presence in circulating cell-free DNA (cfDNA). Nearly 2.5% of cfDNA in the plasma of healthy individuals originates from VECs. Sepsis, graft versus host disease, and cardiac catheterization are associated with elevated levels of VEC-derived cfDNA, indicative of vascular damage. Lung-specific VEC cfDNA is selectively elevated in patients with chronic obstructive pulmonary disease (COPD) or lung cancer, revealing tissue-specific vascular turnover. CONCLUSIONS: VEC cfDNA biomarkers inform vascular dynamics in health and disease, potentially contributing to early diagnosis and monitoring of pathologies, and assessment of drug activity. FUNDING: This work was supported by the Beutler Research Program, Helmsley Charitable Trust, JDRF, Grail and the DON Foundation (to Y.D.). Y.D holds the Walter & Greta Stiel Chair in heart studies. B.G., R.S., J.M., D.N., T.K., and Y.D. filed patents on cfDNA analysis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Epigenoma , Humanos , Endotelio Vascular , Células Endoteliales/metabolismo , Biomarcadores/metabolismo , Biopsia Líquida
7.
Nature ; 613(7943): 355-364, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599988

RESUMEN

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Asunto(s)
Células , Metilación de ADN , Epigénesis Genética , Epigenoma , Humanos , Línea Celular , Células/clasificación , Células/metabolismo , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN/genética , ADN/metabolismo , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Especificidad de Órganos , Proteínas del Grupo Polycomb/metabolismo , Secuenciación Completa del Genoma
8.
Cell Rep ; 41(9): 111719, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450253

RESUMEN

Diabetogenic ablation of beta cells in mice triggers a regenerative response whereby surviving beta cells proliferate and euglycemia is regained. Here, we identify and characterize heterogeneity in response to beta cell ablation. Efficient beta cell elimination leading to severe hyperglycemia (>28 mmol/L), causes permanent diabetes with failed regeneration despite cell cycle engagement of surviving beta cells. Strikingly, correction of glycemia via insulin, SGLT2 inhibition, or a ketogenic diet for about 3 weeks allows partial regeneration of beta cell mass and recovery from diabetes, demonstrating regenerative potential masked by extreme glucotoxicity. We identify gene expression changes in beta cells exposed to extremely high glucose levels, pointing to metabolic stress and downregulation of key cell cycle genes, suggesting failure of cell cycle completion. These findings reconcile conflicting data on the impact of glucose on beta cell regeneration and identify a glucose threshold converting glycemic load from pro-regenerative to anti-regenerative.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Células Secretoras de Insulina , Animales , Ratones , Control Glucémico , Glucosa
9.
Med ; 3(7): 468-480.e5, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716665

RESUMEN

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Asunto(s)
Vacuna BNT162 , COVID-19 , Ácidos Nucleicos Libres de Células , SARS-CoV-2 , Adulto , Anciano , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Vacuna BNT162/administración & dosificación , COVID-19/inmunología , COVID-19/prevención & control , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/inmunología , Femenino , Humanos , Inmunización Secundaria , Masculino , Células B de Memoria/inmunología , Células B de Memoria/metabolismo , Persona de Mediana Edad , SARS-CoV-2/inmunología , Adulto Joven
10.
Elife ; 102021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34842142

RESUMEN

Blood cell counts often fail to report on immune processes occurring in remote tissues. Here, we use immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying human immune cell dynamics. We characterized cfDNA released from specific immune cell types in healthy individuals (N = 242), cross sectionally and longitudinally. Immune cfDNA levels had no individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza vaccination (N = 92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and predicted efficacy of antibody production. Patients with eosinophilic esophagitis (N = 21) and B-cell lymphoma (N = 27) showed selective elevation of eosinophil and B-cell cfDNA, respectively, which were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for monitoring immune responses to physiological and pathological processes that are not accessible using conventional methods.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ácidos Nucleicos Libres de Células/metabolismo , Metilación de ADN , Inmunidad , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Sci Transl Med ; 13(618): eabj2266, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34591660

RESUMEN

Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic tests have relied on RNA extraction followed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays. Whereas automation improved logistics and different pooling strategies increased testing capacity, highly multiplexed next-generation sequencing (NGS) diagnostics remain a largely untapped resource. NGS tests have the potential to markedly increase throughput while providing crucial SARS-CoV-2 variant information. Current NGS-based detection and genotyping assays for SARS-CoV-2 are costly, mostly due to parallel sample processing through multiple steps. Here, we have established ApharSeq, in which samples are barcoded in the lysis buffer and pooled before reverse transcription. We validated this assay by applying ApharSeq to more than 500 clinical samples from the Clinical Virology Laboratory at Hadassah hospital in a robotic workflow. The assay was linear across five orders of magnitude, and the limit of detection was Ct 33 (~1000 copies/ml, 95% sensitivity) with >99.5% specificity. ApharSeq provided targeted high-confidence genotype information due to unique molecular identifiers incorporated into this method. Because of early pooling, we were able to estimate a 10- to 100-fold reduction in labor, automated liquid handling, and reagent requirements in high-throughput settings compared to current testing methods. The protocol can be tailored to assay other host or pathogen RNA targets simultaneously. These results suggest that ApharSeq can be a promising tool for current and future mass diagnostic challenges.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de Ácido Nucleico para COVID-19 , Prueba de COVID-19 , Humanos , Manejo de Especímenes
12.
Diabetologia ; 62(9): 1653-1666, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31187215

RESUMEN

AIMS/HYPOTHESIS: Adult beta cells in the pancreas are the sole source of insulin in the body. Beta cell loss or increased demand for insulin impose metabolic challenges because adult beta cells are generally quiescent and infrequently re-enter the cell division cycle. The aim of this study is to test the hypothesis that a family of proto-oncogene microRNAs that includes miR-17-92 and miR-106b-25 clusters regulates beta cell proliferation or function in the adult endocrine pancreas. METHODS: To elucidate the role of miR-17-92 and miR-106b-25 clusters in beta cells, we used a conditional miR-17-92/miR-106b-25 knockout mouse model. We employed metabolic assays in vivo and ex vivo, together with advanced microscopy of pancreatic sections, bioinformatics, mass spectrometry and next generation sequencing, to examine potential targets of miR-17-92/miR-106b-25, by which they might regulate beta cell proliferation and function. RESULTS: We demonstrate that miR-17-92/miR-106b-25 regulate the adult beta cell mitotic checkpoint and that miR-17-92/miR-106b-25 deficiency results in reduction in beta cell mass in vivo. Furthermore, we reveal a critical role for miR-17-92/miR-106b-25 in glucose homeostasis and in controlling insulin secretion. We identify protein kinase A as a new relevant molecular pathway downstream of miR-17-92/miR-106b-25 in control of adult beta cell division and glucose homeostasis. CONCLUSIONS/INTERPRETATION: The study contributes to the understanding of proto-oncogene miRNAs in the normal, untransformed endocrine pancreas and illustrates new genetic means for regulation of beta cell mitosis and function by non-coding RNAs. DATA AVAILABILITY: Sequencing data that support the findings of this study have been deposited in GEO with the accession code GSE126516.


Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/metabolismo , MicroARNs/metabolismo , Animales , Células Cultivadas , Femenino , Citometría de Flujo , Secreción de Insulina/genética , Masculino , Espectrometría de Masas , Ratones , MicroARNs/genética , Mitosis/genética , Mitosis/fisiología , Páncreas/metabolismo
13.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150306

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Asunto(s)
Daño del ADN/inmunología , Diabetes Mellitus Tipo 1/inmunología , Inflamación/inmunología , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/inmunología , Adulto , Animales , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Inflamación/patología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
14.
Dev Cell ; 45(6): 726-737.e3, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920277

RESUMEN

Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects.


Asunto(s)
Tamaño de los Órganos/fisiología , Páncreas/crecimiento & desarrollo , Páncreas/metabolismo , Células Acinares/fisiología , Animales , Aumento de la Célula , Tamaño de la Célula , Humanos , Hipertrofia , Células Secretoras de Insulina/fisiología , Ratones , Páncreas Exocrino/fisiología
15.
Diabetes Obes Metab ; 19 Suppl 1: 147-152, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28880481

RESUMEN

While the ß-cells of the endocrine pancreas are defined as cells with high levels of insulin production and tight stimulus-secretion coupling, the existence of functional heterogeneity among them has been known for decades. Recent advances in molecular technologies, in particular single-cell profiling on both the protein and messenger RNA level, have uncovered that ß-cells exist in several antigenically and molecularly definable states. Using antibodies to cell surface markers or multidimensional clustering of ß-cells using more than 20 protein markers by mass cytometry, 4 distinct groups of ß-cells could be differentiated. However, whether these states represent permanent cell lineages or are readily interconvertible from one group to another remains to be determined. Nevertheless, future analysis of the pathogenesis of type 1 and type 2 diabetes will certainly benefit from a growing appreciation of ß-cell heterogeneity. Here, we aim to summarize concisely the recent advances in the field and their possible impact on our understanding of ß-cell physiology and pathophysiology.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Insulina/fisiología , Transcriptoma , Animales , Biomarcadores/metabolismo , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Linaje de la Célula , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Perfilación de la Expresión Génica/tendencias , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Análisis de la Célula Individual/tendencias , Especificidad de la Especie
16.
Diabetologia ; 60(8): 1363-1369, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28597073

RESUMEN

Beta cells are primarily defined by their ability to produce insulin and secrete it in response to appropriate stimuli. It has been known for some time, however, that beta cells are not functionally identical to each other and that the rates of insulin synthesis and release differ from cell to cell, although the functional significance of this variability remains unclear. Recent studies have used heterogeneous gene expression to isolate and evaluate different subpopulations of beta cells and to demonstrate alterations in these subpopulations in diabetes. In the last few years, novel technologies have emerged that permit the detailed evaluation of the proteome (e.g. time-of-flight mass spectroscopy, [CyTOF]) and transcriptome (e.g. massively parallel RNA sequencing) at the single-cell level, and tools for single beta cell metabolomics and epigenomics are quickly maturing. The first wave of single beta cell proteome and transcriptome studies were published in 2016, giving a glimpse into the power, but also the limitations, of these approaches. Despite this progress, it remains unclear if the observed heterogeneity of beta cells represents stable, distinct beta cell types or, alternatively, highly dynamic beta cell states. Here we provide a concise overview of recent developments in the emerging field of beta cell heterogeneity and the implications for our understanding of beta cell biology and pathology.


Asunto(s)
Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Insulina/metabolismo , Animales , Epigenómica , Perfilación de la Expresión Génica , Humanos , Células Secretoras de Insulina/patología , Proteómica
17.
Genome Biol ; 17: 77, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121950

RESUMEN

Single-cell transcriptomics requires a method that is sensitive, accurate, and reproducible. Here, we present CEL-Seq2, a modified version of our CEL-Seq method, with threefold higher sensitivity, lower costs, and less hands-on time. We implemented CEL-Seq2 on Fluidigm's C1 system, providing its first single-cell, on-chip barcoding method, and we detected gene expression changes accompanying the progression through the cell cycle in mouse fibroblast cells. We also compare with Smart-Seq to demonstrate CEL-Seq2's increased sensitivity relative to other available methods. Collectively, the improvements make CEL-Seq2 uniquely suited to single-cell RNA-Seq analysis in terms of economics, resolution, and ease of use.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Ciclo Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Sensibilidad y Especificidad
18.
Diabetes ; 65(7): 2081-93, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26993067

RESUMEN

The molecular program underlying infrequent replication of pancreatic ß-cells remains largely inaccessible. Using transgenic mice expressing green fluorescent protein in cycling cells, we sorted live, replicating ß-cells and determined their transcriptome. Replicating ß-cells upregulate hundreds of proliferation-related genes, along with many novel putative cell cycle components. Strikingly, genes involved in ß-cell functions, namely, glucose sensing and insulin secretion, were repressed. Further studies using single-molecule RNA in situ hybridization revealed that in fact, replicating ß-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in ß-cell function. These data suggest that the quiescence-proliferation transition involves global amplification of gene expression, except for a subset of tissue-specific genes, which are "left behind" and whose relative mRNA amount decreases. Our work provides a unique resource for the study of replicating ß-cells in vivo.


Asunto(s)
División Celular/genética , Proliferación Celular/genética , Células Secretoras de Insulina/metabolismo , Transcriptoma , Animales , Citometría de Flujo , Regulación de la Expresión Génica , Células Secretoras de Insulina/citología , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Transgénicos
19.
Nat Med ; 22(4): 412-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26950362

RESUMEN

Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.


Asunto(s)
Envejecimiento/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/biosíntesis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Envejecimiento/patología , Animales , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , PPAR gamma/genética , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...