Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Resist Updat ; 74: 101085, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636338

RESUMEN

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Asunto(s)
Roturas del ADN de Doble Cadena , Resistencia a Antineoplásicos , Recombinación Homóloga , Quinasa Syk , Quinasa Syk/metabolismo , Quinasa Syk/genética , Quinasa Syk/antagonistas & inhibidores , Humanos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Femenino , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos
2.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38128537

RESUMEN

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Asunto(s)
Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Reparación del ADN por Recombinación , Humanos , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Ácido Láctico/metabolismo
3.
Int J Radiat Oncol Biol Phys ; 117(5): 1297-1298, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37980144
4.
Res Sq ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333340

RESUMEN

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.

5.
Signal Transduct Target Ther ; 8(1): 183, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37160887

RESUMEN

Poly (ADP-ribose) polymerase (PARP) inhibitors are one of the most exciting classes of targeted therapy agents for cancers with homologous recombination (HR) deficiency. However, many patients without apparent HR defects also respond well to PARP inhibitors/cisplatin. The biomarker responsible for this mechanism remains unclear. Here, we identified a set of ribosomal genes that predict response to PARP inhibitors/cisplatin in HR-proficient patients. PARP inhibitor/cisplatin selectively eliminates cells with high expression of the eight genes in the identified panel via DNA damage (ATM) signaling-induced pro-apoptotic ribosomal stress, which along with ATM signaling-induced pro-survival HR repair constitutes a new model to balance the cell fate in response to DNA damage. Therefore, the combined examination of the gene panel along with HR status would allow for more precise predictions of clinical response to PARP inhibitor/cisplatin. The gene panel as an independent biomarker was validated by multiple published clinical datasets, as well as by an ovarian cancer organoids library we established. More importantly, its predictive value was further verified in a cohort of PARP inhibitor-treated ovarian cancer patients with both RNA-seq and WGS data. Furthermore, we identified several marketed drugs capable of upregulating the expression of the genes in the panel without causing HR deficiency in PARP inhibitor/cisplatin-resistant cell lines. These drugs enhance PARP inhibitor/cisplatin sensitivity in both intrinsically resistant organoids and cell lines with acquired resistance. Together, our study identifies a marker gene panel for HR-proficient patients and reveals a broader application of PARP inhibitor/cisplatin in cancer therapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Ribosomas
6.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854302

RESUMEN

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Asunto(s)
Cromatina , Reparación del ADN , Animales , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mamíferos/metabolismo , Proteínas de Unión a Telómeros/genética , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Mol Cell ; 83(4): 539-555.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36702126

RESUMEN

Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.


Asunto(s)
Replicación del ADN , Proteína de Replicación A , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Replicación del ADN/genética , Sumoilación , Daño del ADN , Cromatina/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
8.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36138131

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Asunto(s)
Carcinoma Ductal Pancreático , Proteína Homóloga de MRE11 , Metiltransferasas , Neoplasias Pancreáticas , Adenosina Difosfato Ribosa , Carcinoma Ductal Pancreático/tratamiento farmacológico , ADN , Exonucleasas/genética , Humanos , Proteína Homóloga de MRE11/genética , Metiltransferasas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , ARN , Mutaciones Letales Sintéticas , Neoplasias Pancreáticas
9.
Oncogene ; 41(33): 4018-4027, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35821281

RESUMEN

Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.


Asunto(s)
Arsénico , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Estrés Oxidativo , Peptidasa Específica de Ubiquitina 7/genética
10.
J Biol Chem ; 298(2): 101563, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998823

RESUMEN

The cytidine deaminase APOBEC3B (A3B) is an endogenous inducer of somatic mutations and causes chromosomal instability by converting cytosine to uracil in single-stranded DNA. Therefore, identification of factors and mechanisms that mediate A3B expression will be helpful for developing therapeutic approaches to decrease DNA mutagenesis. Arsenic (As) is one well-known mutagen and carcinogen, but the mechanisms by which it induces mutations have not been fully elucidated. Herein, we show that A3B is upregulated and required for As-induced DNA damage and mutagenesis. We found that As treatment causes a decrease of N6-methyladenosine (m6A) modification near the stop codon of A3B, consequently increasing the stability of A3B mRNA. We further reveal that the demethylase FTO is responsible for As-reduced m6A modification of A3B, leading to increased A3B expression and DNA mutation rates in a manner dependent on the m6A reader YTHDF2. Our in vivo data also confirm that A3B is a downstream target of FTO in As-exposed lung tissues. In addition, FTO protein is highly expressed and positively correlates with the protein levels of A3B in tumor samples from human non-small cell lung cancer patients. These findings indicate a previously unrecognized role of A3B in As-triggered somatic mutation and might open new avenues to reduce DNA mutagenesis by targeting the FTO/m6A axis.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Arsénico , Carcinoma de Pulmón de Células no Pequeñas , Citidina Desaminasa , Neoplasias Pulmonares , Antígenos de Histocompatibilidad Menor , ARN Mensajero , Adenosina/genética , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Arsénico/toxicidad , Carcinoma de Pulmón de Células no Pequeñas/inducido químicamente , Carcinoma de Pulmón de Células no Pequeñas/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Desmetilación/efectos de los fármacos , Humanos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mutagénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Leukemia ; 36(4): 1078-1087, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35027656

RESUMEN

Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.


Asunto(s)
Ácidos Nucleicos Libres de Células , Mieloma Múltiple , Ácidos Nucleicos Libres de Células/genética , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Insuficiencia del Tratamiento
12.
Semin Cancer Biol ; 85: 164-184, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33905873

RESUMEN

The acquisition of DNA damage is an early driving event in tumorigenesis. Premalignant lesions show activated DNA damage responses and inactivation of DNA damage checkpoints promotes malignant transformation. However, DNA damage is also a targetable vulnerability in cancer cells. This requires a detailed understanding of the cellular and molecular mechanisms governing DNA integrity. Here, we review current work on DNA damage in tumorigenesis. We discuss DNA double strand break repair, how repair pathways contribute to tumorigenesis, and how double strand breaks are linked to the tumor microenvironment. Next, we discuss the role of oncogenes in promoting DNA damage through replication stress. Finally, we discuss our current understanding on DNA damage in micronuclei and discuss therapies targeting these DNA damage pathways.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , Reparación del ADN/genética , Roturas del ADN de Doble Cadena , Transformación Celular Neoplásica/metabolismo , ADN , Inestabilidad Genómica , Microambiente Tumoral
13.
Nat Commun ; 12(1): 6653, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789768

RESUMEN

BRCA1-BARD1 heterodimers act in multiple steps during homologous recombination (HR) to ensure the prompt repair of DNA double strand breaks. Dysfunction of the BRCA1 pathway enhances the therapeutic efficiency of poly-(ADP-ribose) polymerase inhibitors (PARPi) in cancers, but the molecular mechanisms underlying this sensitization to PARPi are not fully understood. Here, we show that cancer cell sensitivity to PARPi is promoted by the ring between ring fingers (RBR) protein RNF19A. We demonstrate that RNF19A suppresses HR by ubiquitinating BARD1, which leads to dissociation of BRCA1-BARD1 complex and exposure of a nuclear export sequence in BARD1 that is otherwise masked by BRCA1, resulting in the export of BARD1 to the cytoplasm. We provide evidence that high RNF19A expression in breast cancer compromises HR and increases sensitivity to PARPi. We propose that RNF19A modulates the cancer cell response to PARPi by negatively regulating the BRCA1-BARD1 complex and inhibiting HR-mediated DNA repair.


Asunto(s)
Proteína BRCA1/metabolismo , Recombinación Homóloga , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína BRCA1/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis , Daño del ADN , Femenino , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Unión Proteica , Multimerización de Proteína , Dominios RING Finger , Proteínas Supresoras de Tumor/química , Ubiquitina-Proteína Ligasas/química
14.
Nat Cell Biol ; 23(11): 1199-1211, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675390

RESUMEN

While there is extensive evidence for genetic variation as a basis for treatment resistance, other sources of variation result from cellular plasticity. Using multiple myeloma as an example of an incurable lymphoid malignancy, we show how cancer cells modulate lineage restriction, adapt their enhancer usage and employ cell-intrinsic diversity for survival and treatment escape. By using single-cell transcriptome and chromatin accessibility profiling, we show that distinct transcriptional states co-exist in individual cancer cells and that differential transcriptional regulon usage and enhancer rewiring underlie these alternative transcriptional states. We demonstrate that exposure to standard treatment further promotes transcriptional reprogramming and differential enhancer recruitment while simultaneously reducing developmental potential. Importantly, treatment generates a distinct complement of actionable immunotherapy targets, such as CXCR4, which can be exploited to overcome treatment resistance. Our studies therefore delineate how to transform the cellular plasticity that underlies drug resistance into immuno-oncologic therapeutic opportunities.


Asunto(s)
Antineoplásicos/farmacología , Reprogramación Celular , Resistencia a Antineoplásicos/genética , Inmunoterapia , Mieloma Múltiple/tratamiento farmacológico , Receptores CXCR4/antagonistas & inhibidores , Transcripción Genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Linaje de la Célula , Plasticidad de la Célula , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Mieloma Múltiple/genética , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transcriptoma
15.
Clin Cancer Res ; 27(23): 6432-6444, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518309

RESUMEN

PURPOSE: Although remarkably effective in some patients, precision medicine typically induces only transient responses despite initial absence of resistance-conferring mutations. Using BRAF-mutated myeloma as a model for resistance to precision medicine we investigated if BRAF-mutated cancer cells have the ability to ensure their survival by rapidly adapting to BRAF inhibitor treatment. EXPERIMENTAL DESIGN: Full-length single-cell RNA (scRNA) sequencing (scRNA-seq) was conducted on 3 patients with BRAF-mutated myeloma and 1 healthy donor. We sequenced 1,495 cells before, after 1 week, and at clinical relapse to BRAF/MEK inhibitor treatment. We developed an in vitro model of dabrafenib resistance using genetically homogeneous single-cell clones from two cell lines with established BRAF mutations (U266, DP6). Transcriptional and epigenetic adaptation in resistant cells were defined by RNA-seq and H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq). Mitochondrial metabolism was characterized by metabolic flux analysis. RESULTS: Profiling by scRNA-seq revealed rapid cellular state changes in response to BRAF/MEK inhibition in patients with myeloma and cell lines. Transcriptional adaptation preceded detectable outgrowth of genetically discernible drug-resistant clones and was associated with widespread enhancer remodeling. As a dominant vulnerability, dependency on oxidative phosphorylation (OxPhos) was induced. In treated individuals, OxPhos was activated at the time of relapse and showed inverse correlation to MAPK activation. Metabolic flux analysis confirmed OxPhos as a preferential energetic resource of drug-persistent myeloma cells. CONCLUSIONS: This study demonstrates that cancer cells have the ability to rapidly adapt to precision treatments through transcriptional state changes, epigenetic adaptation, and metabolic rewiring, thus facilitating the development of refractory disease while simultaneously exposing novel vulnerabilities.


Asunto(s)
Melanoma , Mieloma Múltiple , Resistencia a Antineoplásicos , Humanos , Melanoma/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mutación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf , Análisis de la Célula Individual
16.
Nat Cell Biol ; 23(8): 894-904, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34354233

RESUMEN

The shieldin complex functions as the downstream effector of 53BP1-RIF1 to promote DNA double-strand break end-joining by restricting end resection. The SHLD2 subunit binds to single-stranded DNA ends and blocks end resection through OB-fold domains. Besides blocking end resection, it is unclear how the shieldin complex processes SHLD2-bound single-stranded DNA and promotes non-homologous end-joining. Here, we identify a downstream effector of the shieldin complex, ASTE1, as a structure-specific DNA endonuclease that specifically cleaves single-stranded DNA and 3' overhang DNA. ASTE1 localizes to DNA damage sites in a shieldin-dependent manner. Loss of ASTE1 impairs non-homologous end-joining, leads to hyper-resection and causes defective immunoglobulin class switch recombination. ASTE1 deficiency also causes resistance to poly(ADP-ribose) polymerase inhibitors in BRCA1-deficient cells owing to restoration of homologous recombination. These findings suggest that ASTE1-mediated 3' single-stranded DNA end cleavage contributes to the control of DSB repair choice by 53BP1, RIF1 and shieldin.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Desoxirribonucleasa I/fisiología , Proteínas/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Femenino , Inestabilidad Genómica , Células HEK293 , Humanos , Cambio de Clase de Inmunoglobulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión
17.
Cancer Discov ; 11(11): 2726-2737, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34099454

RESUMEN

Immune checkpoint blockade (ICB) has revolutionized cancer therapy. However, the response of patients to ICB is difficult to predict. Here, we examined 81 patients with lung cancer under ICB treatment and found that patients with MET amplification were resistant to ICB and had a poor progression-free survival. Tumors with MET amplifications had significantly decreased STING levels and antitumor T-cell infiltration. Furthermore, we performed deep single-cell RNA sequencing on more than 20,000 single immune cells and identified an immunosuppressive signature with increased subsets of XIST- and CD96-positive exhausted natural killer (NK) cells and decreased CD8+ T-cell and NK-cell populations in patients with MET amplification. Mechanistically, we found that oncogenic MET signaling induces phosphorylation of UPF1 and downregulates tumor cell STING expression via modulation of the 3'-UTR length of STING by UPF1. Decreased efficiency of ICB by MET amplification can be overcome by inhibiting MET. SIGNIFICANCE: We suggest that the combination of MET inhibitor together with ICB will overcome ICB resistance induced by MET amplification. Our report reveals much-needed information that will benefit the treatment of patients with primary MET amplification or EGFR-tyrosine kinase inhibitor resistant-related MET amplification.This article is highlighted in the In This Issue feature, p. 2659.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-met , Linfocitos T CD8-positivos , Amplificación de Genes , Humanos , Inmunoterapia , Células Asesinas Naturales , Neoplasias Pulmonares/terapia , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo
18.
Clin Transl Med ; 11(3): e341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784003

RESUMEN

PARP inhibitors induce DNA lesions, the repair of which are highly dependent on homologous recombination (HR), and preferentially kill HR- deficient cancers. However, cancer cells have developed several mechanisms to transform HR and confer drug resistance to PARP inhibition. Therefore, there is a great clinical interest in exploring new therapies that induce HR deficiency (HRD), thereby sensitizing cancer cells to PARP inhibitors. Here, we found that GSK2578215A, a high-selective and effective leucine-rich repeat kinase 2 (LRRK2) inhibitor, or LRRK2 depletion suppresses HR preventing the recruitment of RAD51 to DNA damage sites through disruption of the interaction of RAD51 and BRCA2. Moreover, LRRK2 inhibition or depletion increases the susceptibility of ovarian cancer cells to Olaparib in vitro and in vivo. In clinical specimens, LRRK2 high expression is high related with advanced clinical characteristics and poor survival of ovarian cancer patients. All these findings indicate ovarian cancers expressing high levels of LRRK2 are more resistant to treatment potentially through promoting HR. Furthermore, combination treatment with an LRRK2 and PARP inhibitor may be a novel strategy to improve the effectiveness of LRRK2 expression ovarian cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN por Recombinación/efectos de los fármacos , Animales , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Desnudos , Neoplasias Ováricas/genética , Reparación del ADN por Recombinación/genética
19.
DNA Repair (Amst) ; 100: 103063, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33592542

RESUMEN

The DNA replication stress-induced checkpoint activated through the TopBP1-ATR axis is important for maintaining genomic stability. However, the regulation of TopBP1 in DNA-damage responses remains unclear. In this study, we identify the deubiquitinating enzyme (DUB) USP13 as an important regulator of TopBP1. Mechanistically, USP13 binds to TopBP1 and stabilizes TopBP1 by deubiquitination. Depletion of USP13 impedes ATR activation and hypersensitizes cells to replication stress-inducing agents. Furthermore, high USP13 expression enhances the replication stress response, promotes cancer cell chemoresistance, and is correlated with poor prognosis of cancer patients. Overall, these findings suggest that USP13 is a novel deubiquitinating enzyme for TopBP1 and coordinates the replication stress response.


Asunto(s)
Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , ADN/metabolismo , Células HEK293 , Humanos
20.
Blood ; 137(18): 2463-2480, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33227818

RESUMEN

Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.


Asunto(s)
Carcinogénesis , Galectinas/metabolismo , Regulación Leucémica de la Expresión Génica , Evasión Inmune , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Análisis de la Célula Individual/métodos , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Niño , Preescolar , Resistencia a Antineoplásicos , Femenino , Estudios de Seguimiento , Galectinas/genética , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Pronóstico , RNA-Seq/métodos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...