Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2795: 85-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38594530

RESUMEN

Thermal reversion of phytochromes is the light-independent but strongly temperature-dependent relaxation of the light-activated Pfr form of phytochromes back into the inactive Pr ground state. The thermal reversion rates of different phytochromes vary considerably. For phytochrome B (phyB), thermal reversion represents a critical parameter affecting phyB activity as it reduces the active phyB Pfr pool, accelerated by increasing temperatures. Phytochromes are dimers existing in three different states: Pfr-Pfr homodimer, Pfr-Pr heterodimer, and Pr-Pr homodimer. Consequently, thermal reversion occurs in two steps, with Pfr-Pfr to Pfr-Pr reversion being much slower than reversion from Pfr-Pr to Pr-Pr. To measure thermal reversion in vivo, the relative proportion of Pfr in relation to the total amount of phytochrome (Ptot) must be determined in living samples. This is accomplished by in vivo spectroscopy utilizing dual wavelength ratiospectrophotometers, optimized for assaying phytochromes in highly scattering plant material. The method is depending on the photoreversibility of phytochromes displaying light-induced absorbance changes in response to actinic irradiation. In this chapter, we describe the experimental design and explain step-by-step the calculations necessary to determine the thermal reversion rates of phyB in vivo, taking into account phytochrome dimerization.


Asunto(s)
Fitocromo B , Fitocromo , Análisis Espectral , Luz
2.
Genome Biol ; 24(1): 256, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936225

RESUMEN

BACKGROUND: Daylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in adapting barley and wheat to northern latitudes. How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. RESULTS: We find that phytochrome C (PHYC) is essential for flowering in Brachypodium distachyon. Conversely, ELF3 acts as a floral repressor and elf3 mutants display a constitutive long day phenotype and transcriptome. We find that ELF3 and PHYC occur in a common complex. ELF3 associates with the promoters of a number of conserved regulators of flowering, including PPD1 and VRN1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in short days and is necessary for rapid flowering in response to long days. PHYC is in the active Pfr state at the end of the day, but we observe it undergoes dark reversion over the course of the night. CONCLUSIONS: We propose that PHYC acts as a molecular timer and communicates information on night-length to the circadian clock via ELF3.


Asunto(s)
Brachypodium , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Fotoperiodo , Flores/genética , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 192(2): 1584-1602, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36861637

RESUMEN

The view on the role of light during seed germination stems mainly from studies with Arabidopsis (Arabidopsis thaliana), where light is required to initiate this process. In contrast, white light is a strong inhibitor of germination in other plants, exemplified by accessions of Aethionema arabicum, another member of Brassicaceae. Their seeds respond to light with gene expression changes of key regulators converse to that of Arabidopsis, resulting in opposite hormone regulation and prevention of germination. However, the photoreceptors involved in this process in A. arabicum remain unknown. Here, we screened a mutant collection of A. arabicum and identified koy-1, a mutant that lost light inhibition of germination due to a deletion in the promoter of HEME OXYGENASE 1, the gene for a key enzyme in the biosynthesis of the phytochrome chromophore. koy-1 seeds were unresponsive to red- and far-red light and hyposensitive under white light. Comparison of hormone and gene expression between wild type and koy-1 revealed that very low light fluence stimulates germination, while high irradiance of red and far-red light is inhibitory, indicating a dual role of phytochromes in light-regulated seed germination. The mutation also affects the ratio between the 2 fruit morphs of A. arabicum, suggesting that light reception via phytochromes can fine-tune several parameters of propagation in adaptation to conditions in the habitat.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Arabidopsis/metabolismo , Germinación/genética , Brassicaceae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Semillas/genética , Hormonas/metabolismo
5.
Plant Commun ; 1(2): 100007, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33404546

RESUMEN

Photoreceptors of the phytochrome family control a multitude of responses in plants. Phytochrome A (phyA) is essential for far-red light perception, which is important for germination and seedling establishment in strong canopy shade. Translocation of phyA from the cytosol into nucleus is a key step in far-red light signaling and requires FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). FHY1/FHL bind to phyA downstream signaling components. Therefore, it has been suggested that FHY1/FHL also have a function in assembling phyA transcription factor complexes in the nucleus. Yet, in this study, we show that constitutively nuclear-localized phyA is active in the absence of FHY1 and FHL. Furthermore, an artificial FHY1, consisting of an SV40 NLS, a phyA binding site, and a YFP tag as spacer between them, complements the fhy1-3 fhl-1 double mutant. These findings show that FHY1 and FHL are not required for phyA downstream signaling in the nucleus. However, we found that lines expressing phyA-NLS-YFP are hypersensitive to red and far-red light and that slightly increased levels of constitutively nuclear-localized phyA result in photomorphogenic development in the dark. Thus, restricting phyA to the cytosol and inducing nuclear transport in light by interaction with FHY1/FHL might be important to suppress photomorphogenesis in the dark.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Núcleo Celular/genética , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas Luminiscentes/genética , Mutación , Fitocromo/genética , Fitocromo A/genética , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/genética
6.
New Phytol ; 225(4): 1635-1650, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31596952

RESUMEN

Phytochrome B (phyB) is an excellent light quality and quantity sensor that can detect subtle changes in the light environment. The relative amounts of the biologically active photoreceptor (phyB Pfr) are determined by the light conditions and light independent thermal relaxation of Pfr into the inactive phyB Pr, termed thermal reversion. Little is known about the regulation of thermal reversion and how it affects plants' light sensitivity. In this study we identified several serine/threonine residues on the N-terminal extension (NTE) of Arabidopsis thaliana phyB that are differentially phosphorylated in response to light and temperature, and examined transgenic plants expressing nonphosphorylatable and phosphomimic phyB mutants. The NTE of phyB is essential for thermal stability of the Pfr form, and phosphorylation of S86 particularly enhances the thermal reversion rate of the phyB Pfr-Pr heterodimer in vivo. We demonstrate that S86 phosphorylation is especially critical for phyB signaling compared with phosphorylation of the more N-terminal residues. Interestingly, S86 phosphorylation is reduced in light, paralleled by a progressive Pfr stabilization under prolonged irradiation. By investigating other phytochromes (phyD and phyE) we provide evidence that acceleration of thermal reversion by phosphorylation represents a general mechanism for attenuating phytochrome signaling.


Asunto(s)
Arabidopsis/metabolismo , Fitocromo B/metabolismo , Secuencia de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/genética , Plantas Modificadas Genéticamente , Transducción de Señal
7.
Mol Plant ; 13(3): 386-397, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812690

RESUMEN

Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.


Asunto(s)
Fitocromo/metabolismo , Plantas/metabolismo , Temperatura
8.
Methods Mol Biol ; 2026: 113-120, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31317406

RESUMEN

In vivo spectroscopy is used to directly assay phytochromes in intact plant material. The method is depending on the photoreversibility of phytochromes displaying light induced absorbance changes in response to actinic irradiation. Dual-wavelength ratio spectrophotometers (ratiospects) are the instruments successfully used for assaying phytochromes in highly scattering plant material. In the present chapter I describe the general instrument setup of an automated ratiospect and explain the measuring procedure and data calculation required to determine the total amount of photoreversible phytochromes in a sample as well as the proportion of phytochrome present in the Pfr conformation.


Asunto(s)
Análisis Espectral/métodos , Fitocromo/análisis
9.
Nat Commun ; 8(1): 2221, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263319

RESUMEN

Phytochrome B (phyB) is the primary red light photoreceptor in plants, and regulates both growth and development. The relative levels of phyB in the active state are determined by the light conditions, such as direct sunlight or shade, but are also affected by light-independent dark reversion. Dark reversion is a temperature-dependent thermal relaxation process, by which phyB reverts from the active to the inactive state. Here, we show that the homologous phyB-binding proteins PCH1 and PCHL suppress phyB dark reversion, resulting in plants with dramatically enhanced light sensitivity. Moreover, far-red and blue light upregulate the expression of PCH1 and PCHL in a phyB independent manner, thereby increasing the response to red light perceived by phyB. PCH1 and PCHL therefore provide a node for the molecular integration of different light qualities by regulation of phyB dark reversion, allowing plants to adapt growth and development to the ambient environment.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/genética , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas F-Box/metabolismo , Luz , Fitocromo B , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Temperatura , Factores de Transcripción/metabolismo
10.
Plant Cell Environ ; 40(11): 2457-2468, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27943362

RESUMEN

The red/far-red light absorbing photoreceptors phytochromes regulate development and growth and thus play an essential role in optimizing adaptation of the sessile plants to the ever-changing environment. Our understanding of how absorption of a red/far-red photon by phytochromes initiates/modifies diverse physiological responses has been steadily improving. Research performed in the last 5 years has been especially productive and led to significant conceptual changes about the mode of action of these photoreceptors. In this review, we focus on the phytochrome B photoreceptor, the major phytochrome species active in light-grown plants. We discuss how its light-independent inactivation (termed dark/thermal reversion), post-translational modification, including ubiquitination, phosphorylation and sumoylation, as well as heterodimerization with other phytochrome species modify red light-controlled physiological responses. Finally, we discuss how photobiological properties of phytochrome B enable this photoreceptor to function also as a thermosensor.


Asunto(s)
Luz , Desarrollo de la Planta/efectos de la radiación , Fitocromo/química , Fitocromo/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Transducción de Señal/efectos de la radiación , Temperatura
12.
Science ; 354(6314): 886-889, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27789797

RESUMEN

Plants are responsive to temperature, and some species can distinguish differences of 1°C. In Arabidopsis, warmer temperature accelerates flowering and increases elongation growth (thermomorphogenesis). However, the mechanisms of temperature perception are largely unknown. We describe a major thermosensory role for the phytochromes (red light receptors) during the night. Phytochrome null plants display a constitutive warm-temperature response, and consistent with this, we show in this background that the warm-temperature transcriptome becomes derepressed at low temperatures. We found that phytochrome B (phyB) directly associates with the promoters of key target genes in a temperature-dependent manner. The rate of phyB inactivation is proportional to temperature in the dark, enabling phytochromes to function as thermal timers that integrate temperature information over the course of the night.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Oscuridad , Calor , Fitocromo B/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Fitocromo B/genética , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/genética , Transcriptoma
13.
Science ; 354(6314): 897-900, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27789798

RESUMEN

Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed that phyB is physiologically responsive to both signals. We therefore propose that in addition to its photoreceptor functions, phyB is a temperature sensor in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Fotorreceptores de Plantas/fisiología , Fitocromo B/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Calor , Luz , Mutación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
14.
New Phytol ; 211(2): 584-98, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27027866

RESUMEN

The photoreceptor phytochrome A acts as a light-dependent molecular switch and regulates responses initiated by very low fluences of light (VLFR) and high fluences (HIR) of far-red light. PhyA is expressed ubiquitously, but how phyA signaling is orchestrated to regulate photomorphogenesis is poorly understood. To address this issue, we generated transgenic Arabidopsis thaliana phyA-201 mutant lines expressing the biologically active phyA-YFP photoreceptor in different tissues, and analyzed the expression of several reporter genes, including ProHY5:HY5-GFP and Pro35S:CFP-PIF1, and various FR-HIR-dependent physiological responses. We show that phyA action in one tissue is critical and sufficient to regulate flowering time and root growth; control of cotyledon and hypocotyl growth requires simultaneous phyA activity in different tissues; and changes detected in the expression of reporters are not restricted to phyA-containing cells. We conclude that FR-HIR-controlled morphogenesis in Arabidopsis is mediated partly by tissue-specific and partly by intercellular signaling initiated by phyA. Intercellular signaling is critical for many FR-HIR induced responses, yet it appears that phyA modulates the abundance and activity of key regulatory transcription factors in a tissue-autonomous fashion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Luz , Morfogénesis/efectos de la radiación , Especificidad de Órganos , Fitocromo A/metabolismo , Transducción de Señal/efectos de la radiación , Arabidopsis/genética , Flores/fisiología , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Especificidad de Órganos/efectos de la radiación , Fenotipo , Fototropismo , Estomas de Plantas/citología , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteolisis/efectos de la radiación , Proteínas Recombinantes de Fusión/metabolismo , Plantones/metabolismo , Transcripción Genética/efectos de la radiación
15.
Proc Natl Acad Sci U S A ; 112(35): 11108-13, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283376

RESUMEN

The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyB(Lys996Arg)-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases.


Asunto(s)
Arabidopsis/metabolismo , Luz , Fitocromo B/metabolismo , Transducción de Señal , Sumoilación , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fitocromo B/química , Fitocromo B/genética , Homología de Secuencia de Aminoácido
16.
New Phytol ; 206(3): 965-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26042244

RESUMEN

The photoreceptors phytochromes monitor the red/far-red part of the spectrum, exist in the biologically active Pfr (far-red absorbing) or inactive Pr (red absorbing) forms, and function as red/far-red light-regulated molecular switches to modulate plant development and growth. Phytochromes are synthesized in the cytoplasm, and light induces translocation of the Pfr conformer into the nucleus. Nuclear import of phytochromes is a highly regulated process and is fine-tuned by the quality and quantity of light. It appears that phytochrome A (phyA) and phytochrome B (phyB) do not possess active endogenous nuclear import signals (NLSs), thus light-induced translocation of these photoreceptors into the nucleus requires direct protein­protein interactions with their NLS-containing signaling partners. Sub-cellular partitioning of the various phytochrome species is mediated by different molecular machineries. Translocation of phyA into the nucleus is promoted by FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL), but the identity of nuclear transport facilitators mediating the import of phyB-E into the nucleus remains elusive. Phytochromes localized in the nucleus are associated with specific protein complexes, termed photobodies. The size and distribution of these structures are regulated by the intensity and duration of irradiation, and circumstantial evidence indicates that they are involved in fine-tuning phytochrome signaling.


Asunto(s)
Fototransducción , Fitocromo/metabolismo , Plantas/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fitocromo/fisiología , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación
17.
Nat Plants ; 1: 15090, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-27250256

RESUMEN

Phytochromes are red/far-red-light detecting photoreceptors that regulate plant growth and development. They photo-interconvert between an inactive Pr (red-light absorbing) and a physiologically active Pfr (far-red-light absorbing) form, acting as light-controlled molecular switches. Although the two major plant phytochromes A (phyA) and B (phyB) share similar absorption properties, they exhibit dramatic differences in their action spectra. Since both phytochromes antagonistically regulate seedling development under vegetative shade, it is essential for plants to clearly distinguish between phyA and phyB action. This discrimination is not comprehensible solely by the molecular properties of the phytochromes, but is evidently due to the dynamics of the phytochrome system. Using an integrated experimental and mathematical modelling approach we show that phytochrome dimerization is an essential element for phyB function. Our findings reveal that light-independent Pfr to Pr relaxation (dark reversion) and association/dissociation to nuclear bodies (NBs) severely depend on the conformational state of the phyB dimer. We conclude that only Pfr-Pfr homodimers of phyB can be responsible for triggering physiological responses, leading to a suppression of phyB function in the far-red range of the light spectrum.

18.
Plant Physiol ; 160(1): 289-307, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22760208

RESUMEN

Arabidopsis (Arabidopsis thaliana) mutants hypersensitive to far-red light were isolated under a light program of alternating red and far-red light pulses and were named eid (for empfindlicher im dunkelroten Licht). The dominant eid3 mutant carries a missense mutation in a conserved domain of PHYTOCHROME AND FLOWERING TIME1 (PFT1), an important component of the plant mediator coactivator complex, which links promoter-bound transcriptional regulators to RNA polymerase II complexes. Epistatic analyses were performed to obtain information about the coaction between the mutated PFT1(eid3) and positively and negatively acting components of light signaling cascades. The data presented here provide clear evidence that the mutation mainly enhances light sensitivity downstream of phytochrome A (phyA) and modulates phyB function. Our results demonstrate that the Mediator component cooperates with CONSTITUTIVE PHOTORMORPHOGENIC1 in the regulation of light responses and that the hypersensitive phenotype strictly depends on the presence of the ELONGATED HYPOCOTYL5 transcription factor, an important positive regulator of light-dependent gene expression. Expression profile analyses revealed that PFT1(eid3) alters the transcript accumulation of light-regulated genes even in darkness. Our data further indicate that PFT1 regulates the floral transition downstream of phyA. The PFT1 missense mutation seems to create a constitutively active transcription factor by mimicking an early step in light signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Luz , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Mapeo Cromosómico , Secuencia Conservada , Proteínas de Unión al ADN , Epistasis Genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación Missense , Proteínas Nucleares/genética , Fenotipo , Fotoperiodo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Transducción de Señal , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
19.
J Exp Bot ; 62(15): 5547-60, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21831845

RESUMEN

The EID1-like protein 3 (EDL3) shows high similarity to EID1 (Empfindlicher im dunkelroten Licht 1), an F-box protein that functions as a negative regulator in the signalling cascade downstream of the phytochrome A photoreceptor in Arabidopsis thaliana. Analyses revealed a strong and rapid induction of EDL3 gene expression under osmotic stress, high salinity, and upon abscisic acid (ABA) application. Therefore, it was speculated that EDL3 is involved in the regulation of responses controlled by this plant hormone, which not only regulates many aspects of plant development but also integrates responses towards temperature, drought, osmotic, and salt stresses. Physiological data obtained with over-expresser lines and a conditional knock-down mutant demonstrated that EDL3 functions as a positive regulator in ABA-dependent signalling cascades that control seed germination, root growth, greening of etiolated seedlings, and transition to flowering. Results further demonstrate that EDL3 regulates anthocyanin accumulation under drought stress. The observed effects on physiological responses fit to tissue-specific expression patterns obtained with EDL3-promoter:GUS lines. Bimolecular Fluorescence Complementation assays and yeast two-hybrid analyses showed that EDL3 carries a functional F-box domain. Thus, the protein is presumed to act as a component of a ubiquitin ligase complex that specifically directs negatively acting factors in ABA signalling to degradation via the proteasome.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Antocianinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos
20.
New Phytol ; 179(3): 687-699, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18537884

RESUMEN

* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (

Asunto(s)
Cloruro de Cadmio/toxicidad , Membrana Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , NADPH Oxidasas/antagonistas & inhibidores , Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Calcio/farmacología , Fraccionamiento Celular , Membrana Celular/enzimología , Cucumis sativus/efectos de los fármacos , Cucumis sativus/metabolismo , Transporte de Electrón/efectos de los fármacos , Exposición a Riesgos Ambientales , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Cinética , Cloruro de Magnesio/farmacología , Mitocondrias/metabolismo , Estrés Oxidativo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/química , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/metabolismo , Glycine max/efectos de los fármacos , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...