Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
FASEB J ; 31(11): 5019-5035, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768720

RESUMEN

Within the kidney, angiotensin II (AngII) targets different cell types in the vasculature, tubuli, and glomeruli. An important part of the renal filtration barrier is composed of podocytes with their actin-rich foot processes. In this study, we used stable isotope labeling with amino acids in cell culture coupled to mass spectrometry to characterize relative changes in the phosphoproteome of human podocytes in response to short-term treatment with AngII. In 4 replicates, we identified a total of 17,956 peptides that were traceable to 2081 distinct proteins. Bioinformatic analyses revealed that among the increasingly phosphorylated peptides are predominantly peptides that are related to actin filaments, cytoskeleton, lamellipodia, mammalian target of rapamycin, and MAPK signaling. Among others, this screening approach highlighted the increased phosphorylation of actin-bundling protein, l-plastin (LCP1). AngII-dependent phosphorylation of LCP1 in cultured podocytes was mediated by the kinases ERK, p90 ribosomal S6 kinase, PKA, or PKC. LCP1 phosphorylation increased filopodia formation. In addition, treatment with AngII led to LCP1 redistribution to the cell margins, membrane ruffling, and formation of lamellipodia. Our data highlight the importance of AngII-triggered actin cytoskeleton-associated signal transduction in podocytes.-Schenk, L. K., Möller-Kerutt, A., Klosowski, R., Wolters, D., Schaffner-Reckinger, E., Weide, T., Pavenstädt, H., Vollenbröker, B. Angiotensin II regulates phosphorylation of actin-associated proteins in human podocytes.


Asunto(s)
Angiotensina II/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/metabolismo , Podocitos/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Línea Celular Transformada , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
2.
Mol Cell Proteomics ; 13(6): 1397-411, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24578385

RESUMEN

The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.


Asunto(s)
Autofagia/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/biosíntesis , Flavoproteínas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Mapas de Interacción de Proteínas/genética , Proteómica , Transducción de Señal , Proteínas de Unión al GTP rab/biosíntesis , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
3.
FASEB J ; 27(10): 4108-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23825229

RESUMEN

Infections with coxsackieviruses of type B (CVBs), which are known to induce severe forms of acute and chronic myocarditis, are often accompanied by ventricular arrhythmias and sudden cardiac death. The mechanisms underlying the development of virus-induced, life-threatening arrhythmias, which are phenotypically similar to those observed in patients having functionally impaired cardiac ion channels, remain, however, enigmatic. In the present study, we show, for the first time, modulating time-dependent effects of CVB3 on the cardiac ion channels KCNQ1, hERG1, and Cav1.2 in heterologous expression. Channel protein abundance in cellular plasma membrane and patterns of their subcellular distribution were altered in infected murine hearts. The antiviral compound AG7088 did not prevent these effects on channels. In silico analyses of infected human myocytes suggest pronounced alterations of electrical and calcium signaling and increased risk of arrhythmogenesis. These modifications are attenuated by the common Asian polymorphism KCNQ1 P448R, a genetic determinant preventing coxsackievirus-induced effects in vitro. This study provides a previously unknown explanation for the development of arrhythmias in enteroviral myocarditis, which will help to develop therapeutic strategies for arrhythmia treatment.


Asunto(s)
Enterovirus Humano B/clasificación , Enterovirus Humano B/fisiología , Regulación de la Expresión Génica/fisiología , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Transporte de Proteínas/fisiología , Animales , Simulación por Computador , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Miocitos Cardíacos/virología , Oocitos , Polimorfismo Genético , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA