Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Endocrinol ; 72(3)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175924

RESUMEN

Extra-adrenal de novo aldosterone (Aldo) production has been described inconsistently. Systematic data based upon state-of-the-art technology including validated controls are sparse. We hypothesized that aldosterone synthase (CYP11B2) expression and de novo Aldo production are absent in nonadrenal human cell lines, either immortalized cell lines or commercially available primary cell lines, including peripheral blood mononuclear cells (PBMCs) of individuals without and with primary hyperaldosteronism (PA). CYP11B2-transfected COS-7 and endogenous CYP11B2 expressing adrenal H295R cells served as positive controls. Various well-characterized, purchased, immortalized (BeWo, HEK293, HTR-8/SVneo, JEG-3) and primary (HAEC, HLEC, HRGEC, HRMC, HUAEC, HUVEC, PBMC) cell lines as well as self-isolated PBMCs from PA patients (n = 5) were incubated with the steroid hormone substrates progesterone, deoxycorticosterone, corticosterone or 18-OH-corticosterone with and without Ang II for 24 h to assess CYP11B2 enzymatic activity. CYP11B2 expression was analyzed by real-time PCR and liquid chromatography-mass spectrometry was used to quantify Aldo production. Pronounced CYP11B2 mRNA expression and Aldo production were observed in both positive controls, which followed an incremental time course. Neither substrates alone nor coincubation with Ang II significantly stimulated CYP11B2 expression or Aldo production in various immortalized and primary cell lines and PBMCs of PA patients. These results strongly support the absence of relevant de novo extra-adrenal Aldo production in nonadrenal cells, including blood mononuclear cells, irrespective of the absence or presence of autonomous adrenal Aldo production.


Asunto(s)
Aldosterona , Corticosterona , Humanos , Aldosterona/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Leucocitos Mononucleares/metabolismo , Línea Celular Tumoral , Células HEK293
2.
PLoS One ; 17(6): e0269920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35749380

RESUMEN

AIMS: Glomerular damage indicated by proteinuria is a main symptom in diabetic nephropathy. Mineralocorticoid receptor (MR) antagonists (MRAs) are beneficial irrespective of aldosterone availability. Thus, we hypothesized an alternatively activated MR to promote glomerular damage in proteinuric diabetic nephropathy. Specifically, we aimed first to demonstrate the presence of steroid hormones serving as alternative MR targets in type II diabetic patients with proteinuric kidney disease, second whether MR selectivity was modified, third to characterize MR and glucocorticoid receptor (GR) expression and activity in glomerular cell types exposed to eu- and hyperglycemic conditions, fourth to characterize the pro-fibrotic potential of primary human renal mesangial cells (HRMC) upon stimulation with aldosterone and cortisol, and fifth to specify the involvement of the MR and/or GR in pro-fibrotic signaling. MATERIALS AND METHODS: Urinary steroid hormone profiles of patients with diabetic kidney disease were analyzed by gas chromatography-mass spectrometry and compared to an age and gender matched healthy control group taken out of a population study. In both cohorts, the activity of the MR pre-receptor enzyme 11ß-hydroxysteroid dehydrogenase type 2 (HSD11B2), which inactivates cortisol to prevent it from binding to the MR, was assessed to define a change in MR selectivity. Expression of HSD11B2, MR and GR was quantified in HRMC and primary human renal glomerular endothelial cells (HRGEC). Activity of MR and GR was explored in HRMC by measuring the MR/GR down-stream signal SGK1 and the pro-fibrotic genes TGFB1, FN1 and COL1A1 in normal and high glucose conditions with the MR/GR agonists aldosterone/cortisol and the MR/GR antagonists spironolactone/RU486. RESULTS: Patients with diabetic kidney disease excreted more tetrahydroaldosterone than the control group reaching significance in men. The excretion of MR-agonistic steroid hormones was only increased for 18-hydroxytetrahydrocorticosterone in diabetic women. The excretion of most glucocorticoids was higher in the diabetic cohort. Higher apparent systemic HSD11B2 activity suggested less activation of the MR by cortisol in diabetic patients. Both cell types, HRMC and HRGEC, lacked expression of HSD11B2. Hyperglycemic conditions did not change MR and GR expression and activity. Stimulation with both aldosterone and cortisol promoted upregulation of pro-fibrotic genes in HRMC. This effect of MR and/or GR activation was more pronounced in high glucose conditions and partially inhibited by MRAs and GR antagonists. CONCLUSIONS: In patients with diabetic kidney disease alternative MR activation is conceivable as cortisol and cortisone metabolites are increased. Systemic availability of active metabolites is counteracted via an increased HSD11B2 activity. As this cortisol deactivation is absent in HRMC and HRGEC, cortisol binding to the MR is enabled. Both, cortisol and aldosterone stimulation led to an increased expression of pro-fibrotic genes in HRMC. This mechanism was related to the MR as well as the GR and more marked in high glucose conditions linking the benefit of MRAs in diabetic kidney disease to these findings.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Aldosterona/metabolismo , Células Endoteliales/metabolismo , Femenino , Fibrosis , Glucocorticoides/farmacología , Glucosa , Humanos , Hidrocortisona/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo
3.
Placenta ; 123: 32-40, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537250

RESUMEN

INTRODUCTION: In pregnancy, aldosterone is linked to maternal plasma volume expansion, improved fetal and placental growth/angiogenesis and reduced maternal blood pressure. Aldosterone levels are low in women with pre-eclampsia. Given the placental growth properties of aldosterone in pregnancy, we hypothesised that increased aldosterone improves placental function ex vivo. We applied aldosterone in the dual human placenta perfusion model and analysed specific regulatory markers. METHODS: A single cotyledon was perfused using a trimodal perfusion setup consisting of a control phase (CP; basic perfusion medium (BPM) alone) and two consecutive experimental phases (EP1/EP2; BPM supplemented with 1.5 x 10-9M and 1.5 x 10-7M aldosterone, respectively). CP and EP1/EP2 were conducted in closed circuits lasting 2 h each. Quality/time control perfusions using BPM alone were performed for 360 min to distinguish time-dependent effects from aldosterone-related effects. Perfusates were assessed for control parameters (pH/pO2/pCO2/glucose/lactate/creatinine/antipyrine). Maternal perfusates were analysed for placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1), interleukin-10 (IL-10) and tumour necrosis factor-alpha (TNF-α) using ELISAs. mRNA expression of abovementioned factors was measured by qPCR in post-perfusion tissue. RESULTS: Data from quality/time control perfusions indicated that TNF-α and IL-10 release continuously increased over time. Contrary, in the trimodal perfusion setup the application of aldosterone decreased TNF-α secretion (P < 0.05, EP1/EP2 vs CP, 120 min) and increased PlGF release (P < 0.05, EP1 vs CP, 90/120 min) into the maternal perfusates. mRNA expression followed similar trends, but did not reach significance. DISCUSSION: Our ex vivo placental perfusion data suggest that increasing aldosterone promotes anti-inflammatory and pro-angiogenic factors, which could positively contribute to healthy pregnancy outcomes.


Asunto(s)
Placenta , Preeclampsia , Aldosterona/metabolismo , Femenino , Humanos , Interleucina-10/metabolismo , Perfusión , Placenta/metabolismo , Factor de Crecimiento Placentario , Preeclampsia/metabolismo , Embarazo , Resultado del Embarazo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Sci Rep ; 11(1): 9666, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958648

RESUMEN

The steroid hormone progesterone accounts for immune tolerance in pregnancy. Enhanced progesterone metabolism to 6α-OH-pregnanolone occurs in complicated pregnancies such as in preeclampsia with preterm delivery or intrauterine growth restriction, and in cancer. As lymphatic endothelial cells (LECs) promote tumor immunity, we hypothesized that human LECs modify progesterone bioavailability. Primary human LECs and mice lymph nodes were incubated with progesterone and progesterone metabolism was analyzed by thin layer chromatography and liquid chromatography-mass spectrometry. Expression of steroidogenic enzymes, down-stream signal and steroid hormone receptors was assessed by Real-time PCR. The placental cell line HTR-8/SV neo was used as reference. The impact of the progesterone metabolites of interest was investigated on the immune system by fluorescence-activated cell sorting analysis. LECs metabolize progesterone to 6α-OH-pregnanolone and reactivate progesterone from a precursor. LECs highly express 17ß-hydroxysteroid dehydrogenase 2 and are therefore antiandrogenic and antiestrogenic. LECs express several steroid hormone receptors and PIBF1. Progesterone and its metabolites reduced TNF-α and IFN-γ production in CD4+ and CD8+ T cells. LECs modify progesterone bioavailability and are a target of steroid hormones. Given the global area represented by LECs, they might have a critical immunomodulatory control in pregnancy and cancer.


Asunto(s)
Células Endoteliales/metabolismo , Progesterona/metabolismo , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Cromatografía en Capa Delgada , Femenino , Citometría de Flujo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Interferón gamma/metabolismo , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placenta/citología , Placenta/metabolismo , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Am Heart Assoc ; 7(15): e008363, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30371243

RESUMEN

Background In pregnancy, a high plasma volume maintains uteroplacental perfusion and prevents placental ischemia, a condition linked to elevated maternal blood pressure ( BP ). Reducing BP by increasing Na+ intake via plasma volume expansion appears contra-intuitive. We hypothesize that an appropriate Na+ intake in pregnancy reduces maternal BP and adapts the renin-angiotensin system in a pregnancy-specific manner. Methods and Results BP was measured by implanted telemetry in Sprague-Dawley rats before and throughout pregnancy. Pregnant and nonpregnant animals received either a normal-salt (0.4%; NS ), high-salt (8%; HS ), or low-salt (0.01%; LS ) diet, or HS (days 1-14) followed by LS (days 14-20) diet ( HS / LS ). Before delivery (day 20), animals were euthanized and organs collected. Food, water, and Na+ intake were monitored in metabolic cages, and urinary creatinine and Na+ were analyzed. Na+ intake and retention increased in pregnancy ( NS , LS ), leading to a positive Na+ balance ( NS , LS ). BP was stable during LS , but reduced in HS conditions in pregnancy. The renin-angiotensin system was adapted as expected. Activating cleavage of α- and γ-subunits of the renal epithelial Na+ channel and expression of-full length medullary ß-subunits, accentuated further in all LS conditions, were upregulated in pregnancy. Conclusions Pregnancy led to Na+ retention adapted to dietary changes. HS exposure paradoxically reduced BP . Na+ uptake while only modestly linked to the renin-angiotensin system is enhanced in the presence of posttranslational renal epithelial Na+ channel modifications. This suggests (1) storage of Na+ in pregnancy upon HS exposure, bridging periods of LS availability; and (2) that potentially non-renin-angiotensin-related mechanisms participate in EN aC activation and consecutive Na+ retention.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Sodio en la Dieta/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Angiotensinas/efectos de los fármacos , Angiotensinas/genética , Animales , Dieta Hiposódica , Conducta de Ingestión de Líquido/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Canales Epiteliales de Sodio/efectos de los fármacos , Canales Epiteliales de Sodio/genética , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Peptidil-Dipeptidasa A/efectos de los fármacos , Peptidil-Dipeptidasa A/genética , Embarazo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Angiotensina/efectos de los fármacos , Receptores de Angiotensina/genética , Sistema Renina-Angiotensina/genética , Telemetría , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...