Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photosynth Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776042

RESUMEN

A new measuring system based on the already existing Multi-Color-PAM Fluorimeter (Schreiber et al. in Photosynth Res 113:127-144, 2012) was developed that in addition to standard PAM measurements enables pump-and-probe flash measurements and allows simultaneous measurements of the changes in chlorophyll fluorescence yield (F) during application of saturating flashes (ST). A high-power Chip-on-Board LED array provides ST flashes with close to rectangular profiles at wide ranges of widths (0.5 µs to 5 ms), intensities (1.3 mmol to 1.3 mol 440 nm quanta m-2 s-1) and highly flexible repetition times. Using a dedicated rising-edge profile correction, sub-µs time resolution is obtained for assessment of initial fluorescence and rise kinetics. At maximal to moderate flash intensities the flash-kinetics (changes of F during course of ST, STK) are strongly affected by 'High Intensity Quenching' (HIQ), consisting of Car-triplet quenching, TQ, and donor-side-dependent quenching, DQ. The contribution of TQ is estimated by application of a second ST after 20 µs dark-time. Upon application of flash trains (ST sequences with defined repetition times) typical period-4 oscillations in dark fluorescence yield (F0) and ST-induced fluorescence yield, FmST, are obtained which can be measured in vivo both with suspensions and from the surface of leaves. Examples of application with dilute suspensions of Chlorella and an intact dandelion leaf are presented. It is shown that weak far-red light (730-740 nm) advances the S-state distribution of the water-splitting system by one step, resulting in substantial lowering of FmST and also of the I1-level in the polyphasic rise of fluorescence yield induced by a multiple-turnover flash (MT). Based on comparative measurements of STK and the polyphasic rise kinetics with the same Chlorella sample, it is concluded that the generally observed lower values of maximal fluorescence yields using ST-protocols compared to MT-protocols are due to a higher extent of HIQ (mainly DQ) and the contribution of variable PSI fluorescence to FmST.

2.
Photosynth Res ; 149(1-2): 213-231, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33464442

RESUMEN

Room temperature fluorescence in vivo and its light-induced changes are dominated by chlorophyll a fluorescence excited in photosystem II, F(II), peaking around 685 nm. Photosystem I fluorescence, F(I), peaking around 730 nm, so far has been assumed to be constant in vivo. Here, we present evidence for significant contributions of F(I) to variable fluorescence in the green unicellular alga Chlorella vulgaris, the cyanobacterium Synechococcus leopoliensis and a light-green ivy leaf. A Multi-Color-PAM fluorometer was applied for measurements of the polyphasic fluorescence rise (O-I1-I2-P) induced by strong 440 nm light in a dilute suspension of Chlorella, with detection alternating between emission above 700 nm (F > 700) and below 710 nm (F < 710). By averaging 10 curves each of the F > 700 and F < 710 recordings even small differences could be reliably evaluated. After equalizing the amplitudes of the O-I1 phase, which constitutes a specific F(II) response, the O-I1-I2 parts of the two recordings were close to identical, whereas the I2-P phase was larger in F > 700 than in F < 710 by a factor of 1.42. In analogous measurements with Synechococcus carried out in the dark state 2 using strong 625 nm actinic light, after O-I1 equalization the I2-P phase in F > 700 exceeded that in F < 710 even by a factor of 1.99. In measurements with Chlorella, the I2-P phase and with it the apparent variable fluorescence of PS I, Fv(I), were suppressed by moderate actinic background light and by the plastoquinone antagonist DBMIB. Analogous measurements with leaves are rendered problematic by unavoidable light intensity gradients and the resulting heterogenic origins of F > 700 and F < 710. However, a light-green young ivy leaf gave qualitatively similar results as those obtained with the suspensions, thus strongly suggesting the existence of Fv(I) also in leaves.


Asunto(s)
Chlorella vulgaris/metabolismo , Clorofila A/metabolismo , Fluorescencia , Hedera/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Synechococcus/metabolismo , Adaptación Ocular/fisiología , Temperatura
3.
Photosynth Res ; 142(1): 35-50, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31090015

RESUMEN

The saturation pulse method provides a means to distinguish between photochemical and non-photochemical quenching, based on the assumption that the former is suppressed by a saturating pulse of light (SP) and that the latter is not affected by the SP. Various types of non-photochemical quenching have been distinguished by their rates of dark relaxation in the time ranges of seconds, minutes, and hours. Here we report on a special type of non-photochemical quenching, which is rapidly induced by a pulse of high-intensity light, when PS II reaction centers are closed, and rapidly relaxes again after the pulse. This high-intensity quenching, HIQ, can be quantified by pulse-amplitude-modulation (PAM) fluorimetry (MULTI-COLOR-PAM, high sensitivity combined with high time resolution) via the quasi-instantaneous post-pulse fluorescence increase that precedes recovery of photochemical quenching in the 100-400-µs range. The HIQ amplitude increases linearly with the effective rate of quantum absorption by photosystem II, reaching about 8% of maximal fluorescence yield. It is not affected by DCMU, is stimulated by anoxic conditions, and is suppressed by energy-dependent non-photochemical quenching (NPQ). The HIQ amplitude is close to proportional to the square of maximal fluorescence yield, Fm', induced by an SP and varied by NPQ. These properties are in line with the working hypothesis of HIQ being caused by the annihilation of singlet excited chlorophyll a by triplet excited carotenoid. Significant underestimation of maximal fluorescence yield and photosystem II quantum yield in dark-acclimated samples can be avoided by use of moderate SP intensities. In physiologically healthy illuminated samples, NPQ prevents significant lowering of effective photosystem II quantum yield by HIQ, if excessive SP intensities are avoided.


Asunto(s)
Chlorella/fisiología , Clorofila/metabolismo , Hipoxia de la Célula , Chlorella/efectos de la radiación , Fluorescencia , Luz , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/fisiología
4.
Plant Cell Physiol ; 57(7): 1454-1467, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27053032

RESUMEN

The newly developed Dual/KLAS-NIR spectrophotometer, technical details of which were reported very recently, is used in measuring redox changes of P700, plastocyanin (PC) and ferredoxin (Fd) in intact leaves of Hedera helix, Taxus baccata and Brassica napus An overview of various light-/dark-induced changes of deconvoluted P700+, PC+ and Fd- signals is presented demonstrating the wealth of novel information and the consistency of the obtained results. Fd- changes are particularly large after dark adaptation. PC oxidation precedes P700 oxidation during dark-light induction and in steady-state light response curves. Fd reoxidation during induction correlates with the secondary decline of simultaneously measured fluorescence yield, both of which are eliminated by removal of O2 By determination of 100% redox changes, relative contents of PC/P700 and Fd/P700 can be assessed, which show considerable variations between different leaves, with a trend to higher values in sun leaves. Based on deconvoluted P700+ signals, the complementary quantum yields of PSI, Y(I) (photochemical energy use), Y(ND) (non-photochemical loss due to oxidized primary donor) and Y(NA) (non-photochemical loss due to reduced acceptor) are determined as a function of light intensity and compared with the corresponding complementary quantum yields of PSII, Y(II) (photochemical energy use), Y(NPQ) (regulated non-photochemical loss) and Y(NO) (non-regulated non-photochemical loss). The ratio Y(I)/Y(II) increases with increasing intensities. In the low intensity range, a two-step increase of PC+ is indicative of heterogeneous PC pools.


Asunto(s)
Luz , Espectrofotometría/instrumentación , Clorofila/metabolismo , Ferredoxinas/metabolismo , Fluorescencia , Cinética , Modelos Biológicos , Oxidación-Reducción/efectos de la radiación , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Plastocianina/metabolismo
5.
Photosynth Res ; 128(2): 195-214, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26837213

RESUMEN

A newly developed compact measuring system for assessment of transmittance changes in the near-infrared spectral region is described; it allows deconvolution of redox changes due to ferredoxin (Fd), P700, and plastocyanin (PC) in intact leaves. In addition, it can also simultaneously measure chlorophyll fluorescence. The major opto-electronic components as well as the principles of data acquisition and signal deconvolution are outlined. Four original pulse-modulated dual-wavelength difference signals are measured (785-840 nm, 810-870 nm, 870-970 nm, and 795-970 nm). Deconvolution is based on specific spectral information presented graphically in the form of 'Differential Model Plots' (DMP) of Fd, P700, and PC that are derived empirically from selective changes of these three components under appropriately chosen physiological conditions. Whereas information on maximal changes of Fd is obtained upon illumination after dark-acclimation, maximal changes of P700 and PC can be readily induced by saturating light pulses in the presence of far-red light. Using the information of DMP and maximal changes, the new measuring system enables on-line deconvolution of Fd, P700, and PC. The performance of the new device is demonstrated by some examples of practical applications, including fast measurements of flash relaxation kinetics and of the Fd, P700, and PC changes paralleling the polyphasic fluorescence rise upon application of a 300-ms pulse of saturating light.


Asunto(s)
Clorofila/metabolismo , Ferredoxinas/metabolismo , Hedera/metabolismo , Plastocianina/metabolismo , Espectrofotometría/instrumentación , Fluorescencia , Hedera/efectos de la radiación , Cinética , Luz , Oxidación-Reducción , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Espectrofotometría/métodos
6.
Photosynth Res ; 123(1): 77-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25218266

RESUMEN

Theoretical prediction of effective mean PAR in optically dense samples is complicated by various optical effects, including light scattering and reflections. Direct information on the mean rate of photon absorption by PS II is provided by the kinetics of the fluorescence rise induced upon onset of strong actinic illumination (O-I1 rise). A recently introduced kinetic multi-color PAM fluorometer was applied to study the relationship between initial slope and cell density in the relatively simple model system of suspensions of Chlorella. Use of a curve fitting routine was made which was originally developed for assessment of the wavelength-dependent absorption cross-section of PS II, σ II(λ), in dilute suspensions. The model underlying analysis of the O-I1 rise kinetics is outlined and data on the relationship between fitted values of σ II(λ) and PAR in dilute samples are presented. With increasing cell density, lowering of apparent cross-section, <σ>(λ), with respect to σ II(λ), relates to a decrease of effective mean PAR, (λ), relative to incident PAR(λ). When ML and AL are applied in the same direction, the decline of <σ>(λ)/σ II(λ) with increasing optical density is less steep than that of the theoretically predicted (λ)/PAR(λ). It approaches a value of 0.5 when the same colors of ML and AL are used, in agreement with theory. These observations open the way for estimating mean PAR in optically dense samples via measurements of <σ>(λ)/σ II(λ)).


Asunto(s)
Chlorella/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Fluorescencia , Fluorometría/instrumentación
8.
Photosynth Res ; 117(1-3): 471-87, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23860827

RESUMEN

Technical features and examples of application of a special emitter-detector module for highly sensitive measurements of the electrochromic pigment absorbance shift (ECS) via dual-wavelength (550-520 nm) transmittance changes (P515) are described. This device, which has been introduced as an accessory of the standard, commercially available Dual-PAM-100 measuring system, not only allows steady-state assessment of the proton motive force (pmf) and its partitioning into ΔpH and ΔΨ components, but also continuous recording of the overall charge flux driven by photosynthetic light reactions. The new approach employs a double-modulation technique to derive a continuous signal from the light/dark modulation amplitude of the P515 signal. This new, continuously measured signal primarily reflects the rate of proton efflux via the ATP synthase, which under quasi-stationary conditions corresponds to the overall rate of proton influx driven by coupled electron transport. Simultaneous measurements of charge flux and CO2 uptake as a function of light intensity indicated a close to linear relationship in the light-limited range. A linear relationship between these two signals was also found for different internal CO2 concentrations, except for very low CO2, where the rate of charge flux distinctly exceeded the rate of CO2 uptake. Parallel oscillations in CO2 uptake and charge flux were induced by high CO2 and O2. The new device may contribute to the elucidation of complex regulatory mechanisms in intact leaves.


Asunto(s)
Nicotiana/metabolismo , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Fuerza Protón-Motriz , Taraxacum/metabolismo , Absorción , Dióxido de Carbono/metabolismo , Concentración de Iones de Hidrógeno/efectos de la radiación , Cinética , Luz , Hojas de la Planta/efectos de la radiación , Fuerza Protón-Motriz/efectos de la radiación , Taraxacum/efectos de la radiación , Nicotiana/efectos de la radiación
9.
Photosynth Res ; 114(3): 165-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23408255

RESUMEN

A new type of multi-color PAM chlorophyll fluorometer (Schreiber et al. 2012) was applied for measurements of photodamage to photosystem II (PS II) in optically thin suspensions of Chlorella (200 µg Chl l(-1)) in the presence of 1 mM lincomycin. An action spectrum of the relative decrease of F(v)/F(m) in the 440-625 nm range was measured, which not only showed the expected high activity in the blue, but at a lower level also substantial activity above 540 nm. With the same dilute suspension, a PS II absorption spectrum was derived via measurements of the O-I(1) rise kinetics induced by differently colored strong light at defined incident quantum flux densities. After normalization of the two spectra at 625 nm, the relative extent of photodamage at 440-480 nm proved substantially higher than absorption by PS II, whereas the two spectra were close to identical in the 540-625 nm range. Hence, overall photodamage to PS II appears to consist of two components, one of which is due to light absorbed by PS II pigments, whereas the other one is likely to involve direct light absorption by Mn in the oxygen-evolving complex (Hakala et al. Biochim Biophys Acta 1706:68-80, 2005). Based on this rationale, an action spectrum of the Mn mechanism of photodamage was deconvoluted from the overall action spectrum, declining steeply above 480 nm. An almost identical Mn-spectrum was derived by another approach with the PAR of the various colors being adjusted to give identical rates of PS II turnover, PAR (II). The tentative, basic assumption of negligibly small contribution of the Mn mechanism to photodamage above 540 nm was supported by supplementary measurements using an external 665 nm lamp. 665 nm not only gave about two times PS II turnover as compared to 625 nm, but also about two times photodamage.


Asunto(s)
Chlorella/efectos de la radiación , Clorofila/análisis , Clorofila/efectos de la radiación , Fluorometría/instrumentación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Lincomicina , Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
10.
Photosynth Res ; 114(3): 189-206, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23196877

RESUMEN

The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F(0) and F(M), respectively) and at the end of each light step (F'(0) and F'(M), respectively). Calculated F'(0) values derived from F(0), F(M) and F'(M) fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured F'(0) values. Based on the concept that calculated F'(0) values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured F'(0). This method yields fluorometer-specific PSI data as its input data (F(0), F(M), F'(0) and F'(M)) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F (0) fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F(0) - 1/F(M), up to 50 % in A. thaliana and up to 400 % in Z. mays.


Asunto(s)
Arabidopsis/fisiología , Fluorescencia , Fluorometría , Complejo de Proteína del Fotosistema I/fisiología , Zea mays/fisiología , Fotosíntesis , Hojas de la Planta/metabolismo
11.
Photosynth Res ; 113(1-3): 127-44, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22729479

RESUMEN

Technical features of a novel multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer as well as the applied methodology and some typical examples of its practical application with suspensions of Chlorella vulgaris and Synechocystis PCC 6803 are presented. The multi-color PAM provides six colors of pulse-modulated measuring light (peak-wavelengths at 400, 440, 480, 540, 590, and 625 nm) and six colors of actinic light (AL), peaking at 440, 480, 540, 590, 625 and 420-640 nm (white). The AL can be used for continuous illumination, maximal intensity single-turnover pulses, high intensity multiple-turnover pulses, and saturation pulses. In addition, far-red light (peaking at 725 nm) is provided for preferential excitation of PS I. Analysis of the fast fluorescence rise kinetics in saturating light allows determination of the wavelength- and sample-specific functional absorption cross section of PS II, Sigma(II)(λ), with which the PS II turnover rate at a given incident photosynthetically active radiation (PAR) can be calculated. Sigma(II)(λ) is defined for a quasi-dark reference state, thus differing from σ(PSII) used in limnology and oceanography. Vastly different light response curves for Chlorella are obtained with light of different colors, when the usual PAR-scale is used. Based on Sigma(II)(λ) the PAR, in units of µmol quanta/(m(2) s), can be converted into PAR(II) (in units of PS II effective quanta/s) and a fluorescence-based electron transport rate ETR(II) = PAR(II) · Y(II)/Y(II)(max) can be defined. ETR(II) in contrast to rel.ETR qualifies for quantifying the absolute rate of electron transport in optically thin suspensions of unicellular algae and cyanobacteria. Plots of ETR(II) versus PAR(II) for Chlorella are almost identical using either 440 or 625 nm light. Photoinhibition data are presented suggesting that a lower value of ETR(II)(max) with 440 nm possibly reflects photodamage via absorption by the Mn-cluster of the oxygen-evolving complex.


Asunto(s)
Chlorella vulgaris/fisiología , Clorofila/metabolismo , Fluorometría/instrumentación , Luz , Fotosíntesis/efectos de la radiación , Synechocystis/fisiología , Absorción/efectos de la radiación , Chlorella vulgaris/efectos de la radiación , Color , Transporte de Electrón/efectos de la radiación , Fluorescencia , Cinética , Complejo de Proteína del Fotosistema II/metabolismo , Teoría Cuántica , Synechocystis/efectos de la radiación
12.
FEBS J ; 272(2): 582-92, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15654895

RESUMEN

A highly purified cytochrome b(6)f complex from the cyanobacterium Synechocystis sp. PCC 6803 selectively binds one chlorophyll a and one carotenoid in analogy to the recent published structure from two other b(6)f complexes. The unknown function of these pigments was elucidated by spectroscopy and site-directed mutagenesis. Low-temperature redox difference spectroscopy showed red shifts in the chlorophyll and carotenoid spectra upon reduction of cytochrome b(6), which indicates coupling of these pigments with the heme groups and thereby with the electron transport. This is supported by the correlated kinetics of these redox reactions and also by the distinct orientation of the chlorophyll molecule with respect to the heme cofactors as shown by linear dichroism spectroscopy. The specific role of the carotenoid echinenone for the cytochrome b(6)f complex of Synechocystis 6803 was elucidated by a mutant lacking the last step of echinenone biosynthesis. The isolated mutant complex preferentially contained a carotenoid with 0, 1 or 2 hydroxyl groups (most likely 9-cis isomers of beta-carotene, a monohydroxy carotenoid and zeaxanthin, respectively) instead. This indicates a substantial role of the carotenoid - possibly for strucure and assembly - and a specificity of its binding site which is different from those in most other oxygenic photosynthetic organisms. In summary, both pigments are probably involved in the structure, but may also contribute to the dynamics of the cytochrome b(6)f complex.


Asunto(s)
Carotenoides/química , Clorofila/química , Complejo de Citocromo b6f/química , Synechocystis/enzimología , Hemo/química , Subunidades de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...