Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Commun Biol ; 7(1): 576, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755409

RESUMEN

Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Adulto Joven , Bradicardia/fisiopatología , Reacción de Prevención/fisiología , Amígdala del Cerebelo/fisiología , Recompensa , Giro del Cíngulo/fisiología , Miedo/fisiología , Ansiedad/fisiopatología , Frecuencia Cardíaca/fisiología , Toma de Decisiones/fisiología
3.
Behav Ther ; 55(2): 361-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418046

RESUMEN

Avoidance behavior constitutes a major transdiagnostic symptom that exacerbates anxiety. It hampers fear extinction and predicts poor therapy-outcome. Pavlovian counterconditioning with a reward could alleviate avoidance better than traditional extinction by reducing negative valence of the feared situation. However, previous studies are scarce and did not consider that pathological avoidance is often costly and typically evolves from an approach-avoidance conflict. Therefore, we used an approach-avoidance conflict paradigm to model effects of counterconditioning on costly avoidance (i.e., avoidance that leads to missing out on rewards). Results from our preregistered Bayesian Mixed Model analyses in 51 healthy participants (43 females) indicated that counterconditioning was more effective in reducing negative valuation and decreasing costly avoidance than traditional extinction. This study supports application of a simple counterconditioning technique, shows that its efficacy transfers to more complex avoidance situations, and suggests treatment may benefit from increasing reward drive in combination with extinction to overcome avoidance. Application in a clinical sample is a necessary next step to assess clinical utility of counterconditioning.


Asunto(s)
Extinción Psicológica , Miedo , Femenino , Humanos , Teorema de Bayes , Ansiedad , Trastornos de Ansiedad , Reacción de Prevención
4.
Psychoneuroendocrinology ; 146: 105909, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162182

RESUMEN

One of the hallmarks of post-traumatic stress disorder (PTSD) is abnormalities in the HPA-axis. This includes alterations in its negative feedback regulation. Although altered glucocorticoid receptor (GR) mRNA expression is thought to play a crucial role herein, direct longitudinal evidence in humans is lacking to support this assumption. The current prospective longitudinal study assessed the consequence of repeated trauma exposure on GR mRNA expression from saliva samples in early-career police recruits (n = 112) by assessing them before and after trauma exposure. We did not observe a relationship between change in GR mRNA expression and development of PTSD symptom severity. However, the more traumatic events were experienced during police training the stronger GR mRNA expression was increased. Moreover, increases in GR mRNA expression were associated with blunted HPA-axis stress-reactivity at follow-up compared to baseline. This study provides the first longitudinal evidence of a dose-response relationship between trauma and human GR mRNA expression (extracted from saliva) changes; therefore, replication is warranted. Our finding might contribute a possible explanatory framework for blunted HPA-axis function associated with PTSD.

6.
Front Psychol ; 13: 806163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222194

RESUMEN

It is widely recognized that police performance may be hindered by psychophysiological state changes during acute stress. To address the need for awareness and control of these physiological changes, police academies in many countries have implemented Heart-Rate Variability (HRV) biofeedback training. Despite these trainings now being widely delivered in classroom setups, they typically lack the arousing action context needed for successful transfer to the operational field, where officers must apply learned skills, particularly when stress levels rise. The study presented here aimed to address this gap by training physiological control skills in an arousing decision-making context. We developed a Virtual-Reality (VR) breathing-based biofeedback training in which police officers perform deep and slow diaphragmatic breathing in an engaging game-like action context. This VR game consisted of a selective shoot/don't shoot game designed to assess response inhibition, an impaired capacity in high arousal situations. Biofeedback was provided based on adherence to a slow breathing pace: the slower and deeper the breathing, the less constrained peripheral vision became, facilitating accurate responses to the in-game demands. A total of nine male police trainers completed 10 sessions over a 4-week period as part of a single-case experimental ABAB study-design (i.e., alternating sessions with and without biofeedback). Results showed that eight out of nine participants showed improved breathing control in action, with a positive effect on breathing-induced low frequency HRV, while also improving their in-game behavioral performance. Critically, the breathing-based skill learning transferred to subsequent sessions in which biofeedback was not presented. Importantly, all participants remained highly engaged throughout the training. Altogether, our study showed that our VR environment can be used to train breathing regulation in an arousing and active decision-making context.

7.
Transl Psychiatry ; 12(1): 63, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35173142

RESUMEN

Substantial individual differences exist in how acute stress affects large-scale neurocognitive networks, including salience (SN), default mode (DMN), and central executive networks (CEN). Changes in the connectivity strength of these networks upon acute stress may predict vulnerability to long-term stress effects, which can only be tested in prospective longitudinal studies. Using such longitudinal design, we investigated whether the magnitude of acute-stress-induced functional connectivity changes (delta-FC) predicts the development of post-traumatic stress-disorder (PTSD) symptoms in a relatively resilient group of young police students that are known to be at high risk for trauma exposure. Using resting-state fMRI, we measured acute-stress-induced delta-FC in 190 police recruits before (baseline) and after trauma exposure during repeated emergency-aid services (16-month follow-up). Delta-FC was then linked to the changes in perceived stress levels (PSS) and post-traumatic stress symptoms (PCL and CAPS). Weakened connectivity between the SN and DMN core regions upon acute-stress induction at baseline predicted longitudinal increases in perceived-stress level but not of post-traumatic stress symptoms, whereas increased coupling between the overall SN and anterior cerebellum was observed in participants with higher clinician-rated PTSD symptoms, particularly intrusion levels. All the effects remained significant when controlling for trauma-exposure levels and cortisol-stress reactivity. Neither hormonal nor subjective measures exerted similar predictive or acquired effects. The reconfiguration of large-scale neural networks upon acute-stress induction is relevant for assessing and detecting risk and resilience factors for PTSD. This study highlights the SN connectivity-changes as a potential marker for trauma-related symptom development, which is sensitive even in a relatively resilient sample.


Asunto(s)
Red Nerviosa , Trastornos por Estrés Postraumático , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Estudios Prospectivos
8.
Psychophysiology ; 59(4): e13983, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954858

RESUMEN

Freezing to impending threat is a core defensive response. It has been studied primarily using fear conditioning in non-human animals, thwarting advances in translational human anxiety research that has used other indices, such as skin conductance responses. Here we examine postural freezing as a human conditioning index for translational anxiety research. We employed a mixed cued/contextual fear-conditioning paradigm where one context signals the occurrence of the US upon the presentation of the CS, and another context signals that the CS is not followed by the US. Critically, during the following generalization phase, the CS is presented in a third and novel context. We show that human freezing is highly sensitive to fear conditioning, generalizes to ambiguous contexts, and amplifies with threat imminence. Intriguingly, stronger parasympathetically driven freezing under threat, but not sympathetically mediated skin conductance, predicts subsequent startle magnitude. These results demonstrate that humans show fear-conditioned animal-like freezing responses, known to aid in active preparation for unexpected attack, and that freezing captures real-life anxiety expression. Conditioned freezing offers a promising new, non-invasive, and continuous, readout for human fear conditioning, paving the way for future translational studies into human fear and anxiety.


Asunto(s)
Condicionamiento Clásico , Reflejo de Sobresalto , Animales , Condicionamiento Clásico/fisiología , Miedo/fisiología , Congelación , Generalización Psicológica , Humanos , Reflejo de Sobresalto/fisiología
9.
PLoS One ; 16(12): e0260952, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34965252

RESUMEN

The endeavor to understand the human brain has seen more progress in the last few decades than in the previous two millennia. Still, our understanding of how the human brain relates to behavior in the real world and how this link is modulated by biological, social, and environmental factors is limited. To address this, we designed the Healthy Brain Study (HBS), an interdisciplinary, longitudinal, cohort study based on multidimensional, dynamic assessments in both the laboratory and the real world. Here, we describe the rationale and design of the currently ongoing HBS. The HBS is examining a population-based sample of 1,000 healthy participants (age 30-39) who are thoroughly studied across an entire year. Data are collected through cognitive, affective, behavioral, and physiological testing, neuroimaging, bio-sampling, questionnaires, ecological momentary assessment, and real-world assessments using wearable devices. These data will become an accessible resource for the scientific community enabling the next step in understanding the human brain and how it dynamically and individually operates in its bio-social context. An access procedure to the collected data and bio-samples is in place and published on https://www.healthybrainstudy.nl/en/data-and-methods/access. Trail registration: https://www.trialregister.nl/trial/7955.


Asunto(s)
Encéfalo/fisiología , Medio Social , Adulto , Afecto/fisiología , Conducta , Encéfalo/diagnóstico por imagen , COVID-19/diagnóstico , Cognición/fisiología , Femenino , Humanos , Masculino , Neuroimagen , Sensación/fisiología , Encuestas y Cuestionarios
10.
Psychoneuroendocrinology ; 133: 105417, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34571456

RESUMEN

The anticipation of threat facilitates innate defensive behaviours including freezing reactions. Freezing in humans is characterised by reductions in body sway and heart rate. Limited evidence suggests that individual differences in freezing reactions are associated with predictors of anxiety-related psychopathology including trait anxiety and hypothalamic-pituitary-adrenal (HPA) axis activity. However, previous human studies focused on acutely circulating cortisol levels, leaving the link between freezing and more stable, individual trait markers of HPA axis activity unclear. We investigated whether individual differences in anticipatory freezing reactions are predicted by accumulated hair cortisol concentrations (HCC) and trait anxiety, in a well-powered mixed sample of police recruits at the start of the police training, and age, sex and education matched controls (total N = 419, mean age = 24, Nwomen = 106, Npolice recruits = 337). Freezing-related reactions were assessed with posturographic and heart rate measurements during an active shooting task under threat of shock. The anticipation of threat of shock elicited the expected reductions in body sway and heart rate, indicative of human freezing. Individual differences in threat-related reductions in body sway, but not heart rate, were related to lower HCC and higher trait anxiety. The observed links between postural freezing and predictors of anxiety-related psychopathology suggest the potential value of defensive freezing as a somatic marker for individual differences in stress-vulnerability and resilience. DATA AVAILABILITY: The datasets analysed during the current study are available from the corresponding authors upon reasonable request.


Asunto(s)
Ansiedad , Miedo , Cabello , Hidrocortisona , Adulto , Ansiedad/fisiopatología , Miedo/fisiología , Miedo/psicología , Femenino , Cabello/química , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisario/fisiología , Masculino , Sistema Hipófiso-Suprarrenal/fisiología , Adulto Joven
11.
Handb Clin Neurol ; 179: 419-432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34225979

RESUMEN

The bed nucleus of the stria terminalis (BNST) plays a critical modulatory role in driving fear responses. Part of the so-called extended amygdala, this region shares many functions and connections with the substantially more investigated amygdala proper. In this chapter, we review contributions of the BNST and amygdala to subjective, behavioral, and physiological aspects of fear. Despite the fact that both regions are together involved in each of these aspects of fear, they appear complimentary in their contributions. Specifically, the basolateral amygdala (BLA), through its connections to sensory and orbitofrontal regions, is ideally poised for fast learning and controlling fear reactions in a variety of situations. The central amygdala (CeA) relies on BLA input and is particularly important for adjusting physiological and behavioral responses under acute threat. In contrast, the BNST may profit from more extensive striatal and dorsomedial prefrontal connections to drive anticipatory responses under more ambiguous conditions that allow more time for planning. Thus current evidence suggests that the BNST is ideally suited to play a critical role responding to distant or ambiguous threats and could thereby facilitate goal-directed defensive action.


Asunto(s)
Núcleos Septales , Amígdala del Cerebelo , Miedo , Humanos , Aprendizaje , Imagen por Resonancia Magnética
12.
Sci Rep ; 11(1): 12030, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103543

RESUMEN

Successful responding to acutely threatening situations requires adequate approach-avoidance decisions. However, it is unclear how threat-induced states-like freezing-related bradycardia-impact the weighing of the potential outcomes of such value-based decisions. Insight into the underlying computations is essential, not only to improve our models of decision-making but also to improve interventions for maladaptive decisions, for instance in anxiety patients and first-responders who frequently have to make decisions under acute threat. Forty-two participants made passive and active approach-avoidance decisions under threat-of-shock when confronted with mixed outcome-prospects (i.e., varying money and shock amounts). Choice behavior was best predicted by a model including individual action-tendencies and bradycardia, beyond the subjective value of the outcome. Moreover, threat-related bradycardia (high-vs-low threat) interacted with subjective value, depending on the action-context (passive-vs-active). Specifically, in action-contexts incongruent with participants' intrinsic action-tendencies, stronger bradycardia related to diminished effects of subjective value on choice across participants. These findings illustrate the relevance of testing approach-avoidance decisions in relatively ecologically valid conditions of acute and primarily reinforced threat. These mechanistic insights into approach-avoidance conflict-resolution may inspire biofeedback-related techniques to optimize decision-making under threat. Critically, the findings demonstrate the relevance of incorporating internal psychophysiological states and external action-contexts into models of approach-avoidance decision-making.


Asunto(s)
Reacción de Prevención/fisiología , Toma de Decisiones/fisiología , Congelación , Hipocampo/fisiología , Adolescente , Adulto , Ansiedad , Sistema Nervioso Autónomo , Biorretroalimentación Psicológica , Bradicardia , Conducta de Elección , Conflicto Psicológico , Emociones , Femenino , Humanos , Aprendizaje , Masculino , Negociación , Psicofisiología , Refuerzo en Psicología , Sensibilidad y Especificidad , Adulto Joven
13.
Front Neurosci ; 15: 621517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867915

RESUMEN

Acutely challenging or threatening situations frequently require approach-avoidance decisions. Acute threat triggers fast autonomic changes that prepare the body to freeze, fight or flee. However, such autonomic changes may also influence subsequent instrumental approach-avoidance decisions. Since defensive bodily states are often not considered in value-based decision-making models, it remains unclear how they influence the decision-making process. Here, we aim to bridge this gap by discussing the existing literature on the potential role of threat-induced bodily states on decision making and provide a new neurocomputational framework explaining how these effects can facilitate or bias approach-avoid decisions under threat. Theoretical accounts have stated that threat-induced parasympathetic activity is involved in information gathering and decision making. Parasympathetic dominance over sympathetic activity is particularly seen during threat-anticipatory freezing, an evolutionarily conserved response to threat demonstrated across species and characterized by immobility and bradycardia. Although this state of freezing has been linked to altered information processing and action preparation, a full theoretical treatment of the interactions with value-based decision making has not yet been achieved. Our neural framework, which we term the Threat State/Value Integration (TSI) Model, will illustrate how threat-induced bodily states may impact valuation of competing incentives at three stages of the decision-making process, namely at threat evaluation, integration of rewards and threats, and action initiation. Additionally, because altered parasympathetic activity and decision biases have been shown in anxious populations, we will end with discussing how biases in this system can lead to characteristic patterns of avoidance seen in anxiety-related disorders, motivating future pre-clinical and clinical research.

14.
Front Psychol ; 12: 586553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776830

RESUMEN

As part of the Dutch national science program "Professional Games for Professional Skills" we developed a stress-exposure biofeedback training in virtual reality (VR) for the Dutch police. We aim to reduce the acute negative impact of stress on performance, as well as long-term consequences for mental health by facilitating physiological stress regulation during a demanding decision task. Conventional biofeedback applications mainly train physiological regulation at rest. This might limit the transfer of the regulation skills to stressful situations. In contrast, we provide the user with the opportunity to practice breathing regulation while they carry out a complex task in VR. This setting poses challenges from a technical - (real-time processing of noisy biosignals) as well as from a user-experience perspective (multi-tasking). We illustrate how we approach these challenges in our training and hope to contribute a useful reference for researchers and developers in academia or industry who are interested in using biosignals to control elements in a dynamic virtual environment.

15.
Nat Hum Behav ; 5(8): 1055-1064, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33603200

RESUMEN

Regulating social emotional actions is essential for coping with life stressors and is associated with control by the anterior prefrontal cortex (aPFC) over the amygdala. However, it remains unclear to what extent prefrontal emotion regulation capacities contribute to resilience against developing post-traumatic stress disorder (PTSD) symptoms. Here, 185 police recruits who experienced their core trauma in the line of duty participated in a prospective longitudinal study. Pre- and post-trauma, they performed a well-established functional magnetic resonance imaging (fMRI) approach-avoidance task, mapping impulsive and controlled emotional actions. Higher baseline aPFC, dorsal and medial frontal pole activity was related to lower PTSD symptoms after trauma exposure. aPFC activity predicted symptom development over and above self-reported and behavioural measures. Trauma exposure, but not trauma symptoms, predicted amygdala activation at follow-up. These findings suggest that prefrontal emotion regulation activity predicts increased resilience against developing post-traumatic stress symptoms and may provide fruitful starting points for prediction and intervention studies.


Asunto(s)
Regulación Emocional , Conducta Impulsiva , Policia/psicología , Corteza Prefrontal/diagnóstico por imagen , Trauma Psicológico/psicología , Resiliencia Psicológica , Trastornos por Estrés Postraumático/fisiopatología , Adolescente , Adulto , Femenino , Neuroimagen Funcional , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/fisiología , Estudios Prospectivos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/psicología , Adulto Joven
16.
Behav Res Ther ; 137: 103788, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33422745

RESUMEN

Excessive avoidance behaviour is a cardinal symptom of anxiety disorders. Avoidance is not only associated with the benefits of avoiding threats, but also with the costs of missing out on rewards upon exploration. Psychological and psychophysiological mechanisms contributing to these costly avoidance decisions in prospect of mixed outcomes remain unclear. We developed a novel Fearful Avoidance Task (FAT) that resembles characteristics of real-life approach-avoidance conflicts, enabling to disentangle reward and threat effects. Using the FAT, we investigated individual differences in avoidance behaviour and anticipatory psychophysiological states (i.e. startle reflex and skin conductance) in a relatively large sample of 343 (78 females) participants. Avoidance under acute threat of shock depends on a trade-off between perceived reward and threat. Both increased startle and skin conductance in the absence of threat of shock emerged as predictors of increased avoidance (potentially indicative of fear generalization). Increased avoidance was also associated with female sex and trait anxiety, dependent on reward and threat levels. Our findings highlight distinct possible predictors of heightened avoidance and add to mechanistic understanding of how individual propensity for costly avoidance may emerge. Distinct avoidance typologies based on differential reward and threat sensitivities may have different mechanistic origins and thereby could benefit from different treatment strategies.


Asunto(s)
Individualidad , Psicofisiología , Reacción de Prevención , Miedo , Femenino , Humanos , Reflejo de Sobresalto
17.
Neuropsychopharmacology ; 46(7): 1283-1292, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33479507

RESUMEN

Early interventions to improve resilience require the identification of objective risk biomarkers for PTSD symptom development. Although altered hippocampal and amygdala volumes are consistently observed in PTSD, it remains currently unknown whether they represent a predisposing vulnerability factor for PTSD symptom development or an acquired consequence of trauma exposure and/or the disorder. We conducted a longitudinal, prospective study in 210 police recruits at high risk for trauma exposure (56 females(26.7%); mean[SD] age = 24.02[5.19]). Structural MRI scans and trauma-related symptom severity were assessed at pre-trauma baseline and at 16-month follow-up. Between assessments, police recruits were exposed to various potentially traumatic events during their police training. Police recruits reported a significant increase in police-related trauma exposure and stress-related symptoms between assessments. Smaller hippocampal left dentate gyrus (DG) volumes at baseline predicted increase in self-reported PTSD symptoms (B[SE] = -0.21[0.08], p = 0.011), stress symptoms (B[SE] = -0.16[0.07], p = 0.024) and negative affect (B[SE] = -0.21[0.07], p = 0.005) upon trauma exposure. Amount of police-related trauma exposure between assessments was positively associated with an increase in left basal amygdala nucleus volume (B[SE] = 0.11[0.05], p = 0.026). Taken together, smaller DG-volumes pre-trauma may represent a predisposing neurobiological vulnerability factor for development of trauma-related symptoms. On the other hand, amount of trauma exposure between assessments was positively associated with increased amygdala basal nucleus volume, suggesting acquired neural effects. These findings suggest that preventive interventions for PTSD aimed at improving resilience could be targeted at increasing DG-volume and potentially its functioning.


Asunto(s)
Trastornos por Estrés Postraumático , Adulto , Giro Dentado , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Estudios Prospectivos , Trastornos por Estrés Postraumático/diagnóstico por imagen , Adulto Joven
18.
Hum Brain Mapp ; 41(11): 3089-3099, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293072

RESUMEN

Acute stress induces large-scale neural reorganization with relevance to stress-related psychopathology. Here, we applied a novel supervised machine learning method, combining the strengths of a priori theoretical insights with a data-driven approach, to identify which connectivity changes are most prominently associated with a state of acute stress and individual differences therein. Resting-state functional magnetic resonance imaging scans were taken from 334 healthy participants (79 females) before and after a formal stress induction. For each individual scan, mean time-series were extracted from 46 functional parcels of three major brain networks previously shown to be potentially sensitive to stress effects (default mode network (DMN), salience network (SN), and executive control networks). A data-driven approach was then used to obtain discriminative spatial linear filters that classified the pre- and post-stress scans. To assess potential relevance for understanding individual differences, probability of classification using the most discriminative filters was linked to individual cortisol stress responses. Our model correctly classified pre- versus post-stress states with highly significant accuracy (above 75%; leave-one-out validation relative to chance performance). Discrimination between pre- and post-stress states was mainly based on connectivity changes in regions from the SN and DMN, including the dorsal anterior cingulate cortex, amygdala, posterior cingulate cortex, and precuneus. Interestingly, the probability of classification using these connectivity changes were associated with individual cortisol increases. Our results confirm the involvement of DMN and SN using a data-driven approach, and specifically single out key regions that might receive additional attention in future studies for their relevance also for individual differences.


Asunto(s)
Amígdala del Cerebelo , Conectoma , Red en Modo Predeterminado , Giro del Cíngulo , Red Nerviosa , Lóbulo Parietal , Estrés Psicológico , Aprendizaje Automático Supervisado , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiología , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Estrés Psicológico/diagnóstico por imagen , Estrés Psicológico/fisiopatología
19.
Psychoneuroendocrinology ; 114: 104593, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014640

RESUMEN

Stressors induce physiological changes in the brain and periphery that support adaptive defensive responses. The consequences of psychological stress on cognitive functioning are often measured in laboratory settings using experimentally induced stress that leads to mainly negative subjective feelings. There is a need for verification of these studies using real-life stressors that may potentially induce both positive and negative subjective feelings. In an observational study, we investigated real-life stress induced by voluntary stage performance at a large-scale music festival, including 126 participants (60 female, age range = 16-57 years). Our primary measurements involved salivary cortisol, heart rate, blood pressure, and positive and negative affect. In addition, participants completed a 2-back working memory task and a speeded decision-making task. We found that stage performance significantly increased salivary cortisol - with a particularly low number of cortisol non-responders - and heart rate, even when controlling for potential confounding factors, such as sleep, movement, and alcohol use. Interestingly, stage performance significantly decreased negative affect while increasing positive affect. This positively experienced stressor ("eustressor") was related to impaired working memory performance: the stronger the increases in cortisol, the slower participants responded to targets. Decision-making, however, was not affected. In conclusion, we show how stressful experiences in real-life can lead to positive affect, but still have a similar negative impact on cognitive functioning. We suggest that future research should focus more on the consequences of real-life stressors, and the consequences of eustress, in order to extend our understanding of the concept of psychological stress.


Asunto(s)
Afecto/fisiología , Disfunción Cognitiva/fisiopatología , Toma de Decisiones/fisiología , Hidrocortisona/metabolismo , Memoria a Corto Plazo/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Adolescente , Adulto , Disfunción Cognitiva/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Música , Estrés Psicológico/complicaciones , Estrés Psicológico/etiología , Adulto Joven
20.
Proc Natl Acad Sci U S A ; 116(51): 25941-25947, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772023

RESUMEN

Susceptibility to stress-related psychopathology is associated with reduced expression of the serotonin transporter (5-HTT), particularly in combination with stress exposure. Aberrant physiological and neuronal responses to threat may underlie this increased vulnerability. Here, implementing a cross-species approach, we investigated the association between 5-HTT expression and the neural correlates of fear bradycardia, a defensive response linked to vigilance and action preparation. We tested this during threat anticipation induced by a well-established fear conditioning paradigm applied in both humans and rodents. In humans, we studied the effect of the common 5-HTT-linked polymorphic region (5-HTTLPR) on bradycardia and neural responses to anticipatory threat during functional magnetic resonance imaging scanning in healthy volunteers (n = 104). Compared with homozygous long-allele carriers, the 5-HTTLPR short-allele carriers displayed an exaggerated bradycardic response to threat, overall reduced activation of the medial prefrontal cortex (mPFC), and increased threat-induced connectivity between the amygdala and periaqueductal gray (PAG), which statistically mediated the effect of the 5-HTTLPR genotype on bradycardia. In parallel, 5-HTT knockout (KO) rats also showed exaggerated threat-related bradycardia and behavioral freezing. Immunohistochemistry indicated overall reduced activity of glutamatergic neurons in the mPFC of KO rats and increased activity of central amygdala somatostatin-positive neurons, putatively projecting to the PAG, which-similarly to the human population-mediated the 5-HTT genotype's effect on freezing. Moreover, the ventrolateral PAG of KO rats displayed elevated overall activity and increased relative activation of CaMKII-expressing projection neurons. Our results provide a mechanistic explanation for previously reported associations between 5-HTT gene variance and a stress-sensitive phenotype.


Asunto(s)
Bradicardia/metabolismo , Miedo/fisiología , Reacción Cataléptica de Congelación/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Estrés Psicológico/metabolismo , Adulto , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiología , Genotipo , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Transgénicas , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA