Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Eur J Haematol ; 113(3): 283-289, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38711359

RESUMEN

Posttransplant cyclophosphamide (PtCy) has been shown to decrease post-hematopoietic stem cell transplant acute and chronic graft-versus-host disease (GVHD). In this study, PtCy was used in 44 patients along with mycophenolate and tacrolimus with HLA matched (29) and mismatched (15) unrelated donors to determine the impact of graft content on outcome; thus, all patients had flow cytometric analysis of their graft content including the number of B cells, NK cells, and various T cell subsets. Higher γδ T cell dose was associated with the development of acute GVHD (p = .0038). For PtCy, further studies of the cell product along with further graft manipulation, such as selective γδ T cell depletion, could potentially improve outcomes.


Asunto(s)
Ciclofosfamida , Enfermedad Injerto contra Huésped , Trasplante de Células Madre de Sangre Periférica , Donante no Emparentado , Humanos , Ciclofosfamida/uso terapéutico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Masculino , Femenino , Persona de Mediana Edad , Adulto , Trasplante de Células Madre de Sangre Periférica/efectos adversos , Trasplante de Células Madre de Sangre Periférica/métodos , Estudios Prospectivos , Inmunosupresores/uso terapéutico , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Anciano , Adulto Joven , Resultado del Tratamiento , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Adolescente , Acondicionamiento Pretrasplante/métodos
2.
Cancer Res Commun ; 4(3): 834-848, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38451783

RESUMEN

Current treatment options for metastatic adrenocortical carcinoma (ACC) have limited efficacy, despite the common use of mitotane and cytotoxic agents. This study aimed to identify novel therapeutic options for ACC. An extensive drug screen was conducted to identify compounds with potential activity against ACC cell lines. We further investigated the mechanism of action of the identified compound, TAK-243, its synergistic effects with current ACC therapeutics, and its efficacy in ACC models including patient-derived organoids and mouse xenografts. TAK-243, a clinical ubiquitin-activating enzyme (UAE) inhibitor, showed potent activity in ACC cell lines. TAK-243 inhibited protein ubiquitination in ACC cells, leading to the accumulation of free ubiquitin, activation of the unfolded protein response, and induction of apoptosis. TAK-243 was found to be effluxed out of cells by MDR1, a drug efflux pump, and did not require Schlafen 11 (SLFN11) expression for its activity. Combination of TAK-243 with current ACC therapies (e.g., mitotane, etoposide, cisplatin) produced synergistic or additive effects. In addition, TAK-243 was highly synergistic with BCL2 inhibitors (Navitoclax and Venetoclax) in preclinical ACC models including patient-derived organoids. The tumor suppressive effects of TAK-243 and its synergistic effects with Venetoclax were further confirmed in a mouse xenograft model. These findings provide preclinical evidence to support the initiation of a clinical trial of TAK-243 in patients with advanced-stage ACC. TAK-243 is a promising potential treatment option for ACC, either as monotherapy or in combination with existing therapies or BCL2 inhibitors. SIGNIFICANCE: ACC is a rare endocrine cancer with poor prognosis and limited therapeutic options. We report that TAK-243 is active alone and in combination with currently used therapies and with BCL2 and mTOR inhibitors in ACC preclinical models. Our results suggest implementation of TAK-243 in clinical trials for patients with advanced and metastatic ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Pirazoles , Pirimidinas , Sulfuros , Sulfonamidas , Humanos , Animales , Ratones , Carcinoma Corticosuprarrenal/tratamiento farmacológico , Mitotano , Xenoinjertos , Enzimas Activadoras de Ubiquitina/uso terapéutico , Neoplasias de la Corteza Suprarrenal/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Organoides , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico , Proteínas Nucleares/uso terapéutico
3.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37506331

RESUMEN

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Toxicología , Animales , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos
4.
Cancers (Basel) ; 15(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958304

RESUMEN

Chemotherapy remains a primary treatment for younger AML patients, though many relapse. Data from our group have shown that highly phosphorylated S6 in blasts may predict response to sirolimus given with chemotherapy. We report the results of a phase I study of this combination in newly diagnosed AML and the pharmacodynamic analysis of pS6 before and after treatment. Subjects received sirolimus (12 mg on day 1, 4 mg daily, days 2-10), then idarubicin and cytarabine (days 4-10). Response was assessed at hematologic recovery or by day 42 using a modified IWG criteria. Fifty-five patients received sirolimus. Toxicity was similar to published 7 + 3 data, and 53% had high-, 27% intermediate-, and 20% favorable-risk disease. Forty-four percent of the high-risk patients entered into CR/CRp. Seventy-nine percent of the intermediate-risk subjects had a CR/CRp. All favorable-risk patients had a CR by day 42; 9/11 remained alive and in remission with a median follow-up of 660 days. Additionally, 41/55 patients had adequate samples for pharmacodynamic analysis. All patients demonstrated activation of S6 prior to therapy, in contrast to 67% seen in previous studies of relapsed AML. mTORC1 inhibition was observed in 66% of patients without enrichment among patients who achieved remission. We conclude that sirolimus and 7 + 3 is a well-tolerated and safe regimen. mTORC1 appears to be activated in almost all patients at diagnosis of AML. Inhibition of mTORC1 did not differ based on response, suggesting that AML cells may have redundant signaling pathways that regulate chemosensitivity in the presence of mTORC1 inhibition.

5.
medRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37904956

RESUMEN

Due to a combination of asymptomatic or undiagnosed infections, the proportion of the United States population infected with SARS-CoV-2 was unclear from the beginning of the pandemic. We previously established a platform to screen for SARS-CoV-2 positivity across a representative proportion of the US population, from which we reported that almost 17 million Americans were estimated to have had undocumented infections in the Spring of 2020. Since then, vaccine rollout and prevalence of different SARS-CoV-2 variants have further altered seropositivity trends within the United States population. To explore the longitudinal impacts of the pandemic and vaccine responses on seropositivity, we re-enrolled participants from our baseline study in a 6- and 12- month follow-up study to develop a longitudinal antibody profile capable of representing seropositivity within the United States during a critical period just prior to and during the initiation of vaccine rollout. Initial measurements showed that, since July 2020, seropositivity elevated within this population from 4.8% at baseline to 36.2% and 89.3% at 6 and 12 months, respectively. We also evaluated nucleocapsid seropositivity and compared to spike seropositivity to identify trends in infection versus vaccination relative to baseline. These data serve as a window into a critical timeframe within the COVID-19 pandemic response and serve as a resource that could be used in subsequent respiratory illness outbreaks.

6.
Cancers (Basel) ; 15(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37627061

RESUMEN

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.

7.
Transplant Cell Ther ; 29(9): 539-547, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37379969

RESUMEN

The use of electronic health/medical record (EMR) systems has streamlined medical practice and improved efficiency of clinical care in recent years. However, EMR systems are not generally well designed to support research and tracking of longitudinal outcomes across populations, which are particularly important in hematopoietic stem cell transplantation (HCT) and immune effector cell therapy (IEC), where data reporting to registries and regulatory agencies are often required. Since its formation in 2014, the HCT EMR user group has worked with a large EMR vendor (Epic) to develop many functionalities within the EMR to improve the care of HCT/IEC patients and facilitate the capture of HCT/IEC data in an easily interoperable format. Awareness and the widespread adoption of these new tools among transplant centers remains a challenge, however. In this report, we aim to increase awareness and adoption of these new features in the Epic EMR across the transplantation community, advocate for the use of data standards, and promote future collaboration with other commercial EMRs to develop standardized HCT/IEC content to improve patient care and facilitate interoperable data exchange.


Asunto(s)
Registros Electrónicos de Salud , Trasplante de Células Madre Hematopoyéticas , Humanos , Seguridad del Paciente , Programas Informáticos , Informática
8.
Cancer Lett ; 568: 216284, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356470

RESUMEN

Drug resistance and disease progression are common in multiple myeloma (MM) patients, underscoring the need for new therapeutic combinations. A high-throughput drug screen in 47 MM cell lines and in silico Huber robust regression analysis of drug responses revealed 43 potentially synergistic combinations. We hypothesized that effective combinations would reduce MYC expression and enhance p16 activity. Six combinations cooperatively reduced MYC protein, frequently over-expressed in MM and also cooperatively increased p16 expression, frequently downregulated in MM. Synergistic reductions in viability were observed with top combinations in proteasome inhibitor-resistant and sensitive MM cell lines, while sparing fibroblasts. Three combinations significantly prolonged survival in a transplantable Ras-driven allograft model of advanced MM closely recapitulating high-risk/refractory myeloma in humans and reduced viability of ex vivo treated patient cells. Common genetic pathways similarly downregulated by these combinations promoted cell cycle transition, whereas pathways most upregulated were involved in TGFß/SMAD signaling. These preclinical data identify potentially useful drug combinations for evaluation in drug-resistant MM and reveal potential mechanisms of combined drug sensitivity.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ensayos Analíticos de Alto Rendimiento , Sinergismo Farmacológico , Ciclo Celular , Combinación de Medicamentos , Línea Celular Tumoral , Resistencia a Antineoplásicos
9.
Redox Biol ; 63: 102719, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244126

RESUMEN

Selenoprotein glutathione peroxidases (GPX), like ubiquitously expressed GPX1 and the ferroptosis modulator GPX4, enact antioxidant activities by reducing hydroperoxides using glutathione. Overexpression of these enzymes is common in cancer and can be associated with the development of resistance to chemotherapy. GPX1 and GPX4 inhibitors have thus shown promise as anti-cancer agents, and targeting other GPX isoforms may prove equally beneficial. Existing inhibitors are often promiscuous, or modulate GPXs only indirectly, so novel direct inhibitors identified through screening against GPX1 and GPX4 could be valuable. Here, we developed optimized glutathione reductase (GR)-coupled GPX assays for the biochemical high-throughput screen (HTS) of almost 12,000 compounds with proposed mechanisms of action. Initial hits were triaged using a GR counter-screen, assessed for isoform specificity against an additional GPX isoform, GPX2, and were assessed for general selenocysteine-targeting activity using a thioredoxin reductase (TXNRD1) assay. Importantly, 70% of the GPX1 inhibitors identified in the primary screen, including several cephalosporin antibiotics, were found to also inhibit TXNRD1, while auranofin, previously known as a TXNRD1 inhibitor, also inhibited GPX1 (but not GPX4). Additionally, every GPX1 inhibitor identified (including omapatrilat, tenatoprazole, cefoxitin and ceftibuten) showed similar inhibitory activity against GPX2. Some compounds inhibiting GPX4 but not GPX1 or GPX2, also inhibited TXNRD1 (26%). Compounds only inhibiting GPX4 included pranlukast sodium hydrate, lusutrombopag, brilanestrant, simeprevir, grazoprevir (MK-5172), paritaprevir, navitoclax, venetoclax and VU0661013. Two compounds (metamizole sodium and isoniazid sodium methanesulfate) inhibited all three GPXs but not TXNRD1, while 2,3-dimercaptopropanesulfonate, PI4KIII beta inhibitor 3, SCE-2174 and cefotetan sodium inhibited all tested selenoproteins (but not GR). The detected overlaps in chemical space suggest that the counter screens introduced here should be imperative for identification of specific GPX inhibitors. With this approach, we could indeed identify novel GPX1/GPX2- or GPX4-specific inhibitors, thus presenting a validated pipeline for future identification of specific selenoprotein-targeting agents. Our study also identified GPX1/GPX2, GPX4 and/or TXNRD1 as targets for several previously developed pharmacologically active compounds.


Asunto(s)
Glutatión Peroxidasa GPX1 , Neoplasias , Humanos , Glutatión , Glutatión Peroxidasa GPX1/antagonistas & inhibidores , Selenoproteínas
10.
Cancer Res ; 83(12): 1941-1952, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37140427

RESUMEN

Major advances have been made in the field of precision medicine for treating cancer. However, many open questions remain that need to be answered to realize the goal of matching every patient with cancer to the most efficacious therapy. To facilitate these efforts, we have developed CellMinerCDB: National Center for Advancing Translational Sciences (NCATS; https://discover.nci.nih.gov/rsconnect/cellminercdb_ncats/), which makes available activity information for 2,675 drugs and compounds, including multiple nononcology drugs and 1,866 drugs and compounds unique to the NCATS. CellMinerCDB: NCATS comprises 183 cancer cell lines, with 72 unique to NCATS, including some from previously understudied tissues of origin. Multiple forms of data from different institutes are integrated, including single and combination drug activity, DNA copy number, methylation and mutation, transcriptome, protein levels, histone acetylation and methylation, metabolites, CRISPR, and miscellaneous signatures. Curation of cell lines and drug names enables cross-database (CDB) analyses. Comparison of the datasets is made possible by the overlap between cell lines and drugs across databases. Multiple univariate and multivariate analysis tools are built-in, including linear regression and LASSO. Examples have been presented here for the clinical topoisomerase I (TOP1) inhibitors topotecan and irinotecan/SN-38. This web application provides both substantial new data and significant pharmacogenomic integration, allowing exploration of interrelationships. SIGNIFICANCE: CellMinerCDB: NCATS provides activity information for 2,675 drugs in 183 cancer cell lines and analysis tools to facilitate pharmacogenomic research and to identify determinants of response.


Asunto(s)
National Center for Advancing Translational Sciences (U.S.) , Neoplasias Basocelulares , Estados Unidos , Humanos , Farmacogenética , Línea Celular Tumoral , Bases de Datos Factuales , Irinotecán , Internet
11.
SLAS Discov ; 28(4): 193-201, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121274

RESUMEN

We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted a priori, and open source code for automation and analyses. We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Humanos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Combinación de Medicamentos , Evaluación Preclínica de Medicamentos
12.
J Control Release ; 357: 580-590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054779

RESUMEN

Choroid plexus carcinoma (CPC) is a rare infantile brain tumor with an aggressive clinical course that often leaves children with debilitating side effects due to aggressive and toxic chemotherapies. Development of novel therapeutical strategies for this disease have been extremely limited owing to the rarity of the disease and the paucity of biologically relevant substrates. We conducted the first high-throughput screen (HTS) on a human patient-derived CPC cell line (Children Cancer Hospital Egypt, CCHE-45) and identified 427 top hits highlighting key molecular targets in CPC. Furthermore, a combination screen with a wide variety of targets revealed multiple synergistic combinations that may pave the way for novel therapeutical strategies against CPC. Based on in vitro efficiency, central nervous system (CNS) penetrance ability and feasible translational potential, two combinations using a DNA alkylating or topoisomerase inhibitors in combination with an ataxia telangiectasia mutated and rad3 (ATR) inhibitor (topotecan/elimusertib and melphalan/elimusertib respectively) were validated in vitro and in vivo. Pharmacokinetic assays established increased brain penetrance with intra-arterial (IA) delivery over intra-venous (IV) delivery and demonstrated a higher CNS penetrance for the combination melphalan/elimusertib. The mechanisms of synergistic activity for melphalan/elimusertib were assessed through transcriptome analyses and showed dysregulation of key oncogenic pathways (e.g. MYC, mammalian target of rapamycin mTOR, p53) and activation of critical biological processes (e.g. DNA repair, apoptosis, hypoxia, interferon gamma). Importantly, IA administration of melphalan combined with elimusertib led to a significant increase in survival in a CPC genetic mouse model. In conclusion, this study is, to the best of our knowledge, the first that identifies multiple promising combinatorial therapeutics for CPC and emphasizes the potential of IA delivery for the treatment of CPC.


Asunto(s)
Carcinoma , Neoplasias del Plexo Coroideo , Niño , Humanos , Ratones , Animales , Melfalán , Neoplasias del Plexo Coroideo/tratamiento farmacológico , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Topotecan , Mamíferos
13.
J Exp Clin Cancer Res ; 42(1): 99, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095531

RESUMEN

BACKGROUND: MiT-Renal Cell Carcinoma (RCC) is characterized by genomic translocations involving microphthalmia-associated transcription factor (MiT) family members TFE3, TFEB, or MITF. MiT-RCC represents a specific subtype of sporadic RCC that is predominantly seen in young patients and can present with heterogeneous histological features making diagnosis challenging. Moreover, the disease biology of this aggressive cancer is poorly understood and there is no accepted standard of care therapy for patients with advanced disease. Tumor-derived cell lines have been established from human TFE3-RCC providing useful models for preclinical studies. METHODS: TFE3-RCC tumor derived cell lines and their tissues of origin were characterized by IHC and gene expression analyses. An unbiased high-throughput drug screen was performed to identify novel therapeutic agents for treatment of MiT-RCC. Potential therapeutic candidates were validated in in vitro and in vivo preclinical studies. Mechanistic assays were conducted to confirm the on-target effects of drugs. RESULTS: The results of a high-throughput small molecule drug screen utilizing three TFE3-RCC tumor-derived cell lines identified five classes of agents with potential pharmacological efficacy, including inhibitors of phosphoinositide-3-kinase (PI3K) and mechanistic target of rapamycin (mTOR), and several additional agents, including the transcription inhibitor Mithramycin A. Upregulation of the cell surface marker GPNMB, a specific MiT transcriptional target, was confirmed in TFE3-RCC and evaluated as a therapeutic target using the GPNMB-targeted antibody-drug conjugate CDX-011. In vitro and in vivo preclinical studies demonstrated efficacy of the PI3K/mTOR inhibitor NVP-BGT226, Mithramycin A, and CDX-011 as potential therapeutic options for treating advanced MiT-RCC as single agents or in combination. CONCLUSIONS: The results of the high-throughput drug screen and validation studies in TFE3-RCC tumor-derived cell lines have provided in vitro and in vivo preclinical data supporting the efficacy of the PI3K/mTOR inhibitor NVP-BGT226, the transcription inhibitor Mithramycin A, and GPNMB-targeted antibody-drug conjugate CDX-011 as potential therapeutic options for treating advanced MiT-RCC. The findings presented here should provide the basis for designing future clinical trials for patients with MiT-driven RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Inhibidores mTOR , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Translocación Genética , Fosfatidilinositol 3-Quinasa , Glicoproteínas de Membrana/genética
14.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883564

RESUMEN

Small cell lung cancer (SCLC) is a recalcitrant malignancy with limited treatment options. Bromodomain and extraterminal domain inhibitors (BETis) have shown promising preclinical activity in SCLC, but the broad sensitivity spectrum limits their clinical prospects. Here, we performed unbiased high-throughput drug combination screens to identify therapeutics that could augment the antitumor activities of BETis in SCLC. We found that multiple drugs targeting the PI-3K-AKT-mTOR pathway synergize with BETis, among which mTOR inhibitors (mTORis) show the highest synergy. Using various molecular subtypes of the xenograft models derived from patients with SCLC, we confirmed that mTOR inhibition potentiates the antitumor activities of BETis in vivo without substantially increasing toxicity. Furthermore, BETis induce apoptosis in both in vitro and in vivo SCLC models, and this antitumor effect is further amplified by combining mTOR inhibition. Mechanistically, BETis induce apoptosis in SCLC by activating the intrinsic apoptotic pathway. However, BET inhibition leads to RSK3 upregulation, which promotes survival by activating the TSC2-mTOR-p70S6K1-BAD cascade. mTORis block this protective signaling and augment the apoptosis induced by BET inhibition. Our findings reveal a critical role of RSK3 induction in tumor survival upon BET inhibition and warrant further evaluation of the combination of mTORis and BETis in patients with SCLC.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Inhibidores mTOR , Carcinoma Pulmonar de Células Pequeñas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/fisiología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Serina-Treonina Quinasas TOR
16.
Transplant Cell Ther ; 28(12): 831.e1-831.e7, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167307

RESUMEN

Contemporary, prospective data regarding the impact of granulocyte-colony stimulating factor (G-CSF) on outcomes after autologous hematopoietic stem cell transplantation (Auto-HSCT) in an era when stem cell grafts are more qualitatively robust are limited. Recent retrospective analyses have not supported a beneficial effect of post-transplantation G-CSF use on major outcomes after Auto-HSCT leading to strategies to delay or eliminate the use of G-CSF altogether in this context. To test the hypothesis that the infusion of consistently higher doses of stem cells (defined as ≥4 × 106/kg) in Auto-HSCT will obviate the need for post-transplantation G-CSF. If so, the impact of withholding G-CSF will be noninferior to the use of G-CSF in terms of length of stay (LOS). The specific objectives were to conduct a prospective, randomized clinical trial primarily examining the impact of post-transplantation G-CSF on LOS, and secondarily on engraftment, infectious complications, antibiotic usage, and incidence of engraftment syndrome after Auto-HSCT in patients receiving versus not receiving G-CSF after Auto-HSCT. Patients with multiple myeloma or non-Hodgkin lymphoma (NHL) who underwent Pegfilgrastim plus Plerixafor-primed stem cell collection followed by Auto-HSCT were randomized to the G-CSF group (receive G-CSF starting at day 3 after Auto-HSCT) or the no G-CSF group (G-CSF withheld after Auto-HSCT). Seventy patients per arm were planned to demonstrate the primary endpoint of noninferiority in LOS between the G-CSF and the no G-CSF groups. Patient outcomes in the two groups were followed up and compared after Auto-HSCT, and an interim analysis for futility was planned when accrual reached 50%.The primary finding of this study was that despite only a 2-day longer median absolute neutrophil count (ANC) recovery in the no G-CSF arm (median 11 versus 13 days; P = .001), LOS was 4 days longer in patients not treated with G-CSF (median 11 days versus 15 days; P = .001). G-CSF use was associated with more robust incremental daily increases in ANC once recovered (P = .001), fewer days of febrile neutropenia (P = .001), and fewer days on antibiotics (P = .001), potentially contributing to this disproportionate finding. Inferiority in LOS in the no G-CSF group was demonstrated on the interim analysis, and the study was closed at the half-way point. There were no significant group differences in platelet recovery, documented infections, hospital readmissions, or overall survival at 1 year. Engraftment syndrome occurred in 54.3% of patients and was not related to G-CSF use. These results suggest that the increased LOS associated with the omission of G-CSF is largely due to concerns regarding the potential for infection in patients without a stable, recovered ANC in a hospital setting. Engraftment syndrome represented a significant source of febrile neutropenia further contributing to patient safety concerns and requires strategies to decrease its incidence. Infectious complications and death were not affected by the omission of G-CSF supporting a carefully monitored outpatient approach to Auto-HSCT in which white blood cell growth factor is eliminated or given as needed for documented infection. © 2023 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.


Asunto(s)
Neutropenia Febril , Compuestos Heterocíclicos , Humanos , Trasplante Autólogo , Movilización de Célula Madre Hematopoyética/métodos , Estudios Retrospectivos , Estudios Prospectivos , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Neutropenia Febril/tratamiento farmacológico
17.
Nat Commun ; 13(1): 5469, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115844

RESUMEN

Oncogenic RAS mutations are common in multiple myeloma (MM), an incurable malignancy of plasma cells. However, the mechanisms of pathogenic RAS signaling in this disease remain enigmatic and difficult to inhibit therapeutically. We employ an unbiased proteogenomic approach to dissect RAS signaling in MM. We discover that mutant isoforms of RAS organize a signaling complex with the amino acid transporter, SLC3A2, and MTOR on endolysosomes, which directly activates mTORC1 by co-opting amino acid sensing pathways. MM tumors with high expression of mTORC1-dependent genes are more aggressive and enriched in RAS mutations, and we detect interactions between RAS and MTOR in MM patient tumors harboring mutant RAS isoforms. Inhibition of RAS-dependent mTORC1 activity synergizes with MEK and ERK inhibitors to quench pathogenic RAS signaling in MM cells. This study redefines the RAS pathway in MM and provides a mechanistic and rational basis to target this mode of RAS signaling.


Asunto(s)
Genes ras , Mieloma Múltiple , Factores de Transcripción , Aminoácidos/metabolismo , Genes ras/genética , Genes ras/fisiología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mutación , Isoformas de Proteínas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Bone Marrow Transplant ; 57(11): 1671-1680, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35986105

RESUMEN

Allogeneic hematopoietic stem cell transplantation (allo-SCT) remains the best curative option for the majority of patients with hematologic malignancies (HM); however, many elderly patients are excluded from transplant and outcome data in this population is still limited. The novel two-step graft engineering approach has been the main platform for allo-SCT at Thomas Jefferson University since 2006. Following administration of the preparative regimen, we infuse donor lymphocytes, followed by cyclophosphamide to induce bidirectional tolerance, then infusion of CD34-selected cells. A total of 76 patients ≥ 65 years old with HM underwent haploidentical (haplo) allo-SCT on the two-step transplant platform between 2007 and 2021. The median time to neutrophil engraftment was 11 days and platelet engraftment was 18 days. With a median follow up of 44 months, the 3-year overall survival (OS) and progression-free survival (PFS) were 36.3% and 35.6%, respectively. The cumulative incidences of non-relapse mortality (NRM) and relapse at 3 years were 43.5% and 21.0% at 3 years, respectively. The cumulative incidence of grade III-IV acute graft-versus-host-disease (GVHD) was 11.1% at 6 months, and chronic GVHD requiring treatment was 15.1% at 2 years. The two-step haplo allo-SCT is a novel alternative platform for high-risk older HM patients, achieving fast engraftment, low relapse rates and promising survival.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Humanos , Anciano , Enfermedad Injerto contra Huésped/etiología , Recurrencia Local de Neoplasia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Ciclofosfamida , Acondicionamiento Pretrasplante/efectos adversos
19.
ACS Infect Dis ; 8(6): 1191-1203, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35648838

RESUMEN

SARS-CoV-2 is the causative viral pathogen driving the COVID-19 pandemic that prompted an immediate global response to the development of vaccines and antiviral therapeutics. For antiviral therapeutics, drug repurposing allows for rapid movement of the existing clinical candidates and therapies into human clinical trials to be tested as COVID-19 therapies. One effective antiviral treatment strategy used early in symptom onset is to prevent viral entry. SARS-CoV-2 enters ACE2-expressing cells when the receptor-binding domain of the spike protein on the surface of SARS-CoV-2 binds to ACE2 followed by cleavage at two cut sites by TMPRSS2. Therefore, a molecule capable of inhibiting the protease activity of TMPRSS2 could be a valuable antiviral therapy. Initially, we used a fluorogenic high-throughput screening assay for the biochemical screening of 6030 compounds in NCATS annotated libraries. Then, we developed an orthogonal biochemical assay that uses mass spectrometry detection of product formation to ensure that hits from the primary screen are not assay artifacts from the fluorescent detection of product formation. Finally, we assessed the hits from the biochemical screening in a cell-based SARS-CoV-2 pseudotyped particle entry assay. Of the six molecules advanced for further studies, two are approved drugs in Japan (camostat and nafamostat), two have entered clinical trials (PCI-27483 and otamixaban), while the other two molecules are peptidomimetic inhibitors of TMPRSS2 taken from the literature that have not advanced into clinical trials (compounds 92 and 114). This work demonstrates a suite of assays for the discovery and development of new inhibitors of TMPRSS2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Intervención Coronaria Percutánea , Enzima Convertidora de Angiotensina 2 , Antivirales/farmacología , Reposicionamiento de Medicamentos/métodos , Humanos , Pandemias , SARS-CoV-2 , Serina Endopeptidasas
20.
Arch Toxicol ; 96(7): 1975-1987, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35435491

RESUMEN

Currently, approximately 80,000 chemicals are used in commerce. Most have little-to-no toxicity information. The U.S. Toxicology in the 21st Century (Tox21) program has conducted a battery of in vitro assays using a quantitative high-throughput screening (qHTS) platform to gain toxicity information on environmental chemicals. Due to technical challenges, standard methods for providing xenobiotic metabolism could not be applied to qHTS assays. To address this limitation, we screened the Tox21 10,000-compound (10K) library, with concentrations ranging from 2.8 nM to 92 µM, using a p53 beta-lactamase reporter gene assay (p53-bla) alone or with rat liver microsomes (RLM) or human liver microsomes (HLM) supplemented with NADPH, to identify compounds that induce p53 signaling after biotransformation. Two hundred and seventy-eight compounds were identified as active under any of these three conditions. Of these 278 compounds, 73 gave more potent responses in the p53-bla assay with RLM, and 2 were more potent in the p53-bla assay with HLM compared with the responses they generated in the p53-bla assay without microsomes. To confirm the role of metabolism in the differential responses, we re-tested these 75 compounds in the absence of NADPH or with heat-attenuated microsomes. Forty-four compounds treated with RLM, but none with HLM, became less potent under these conditions, confirming the role of RLM in metabolic activation. Further evidence of biotransformation was obtained by measuring the half-life of the parent compounds in the presence of microsomes. Together, the data support the use of RLM in qHTS for identifying chemicals requiring biotransformation to induce biological responses.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteína p53 Supresora de Tumor , Activación Metabólica , Animales , Ensayos Analíticos de Alto Rendimiento/métodos , Microsomas Hepáticos , NADP , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA