Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328627

RESUMEN

Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting ß-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Diabetes Mellitus Tipo 2/genética , Genotipo , Hiperglucemia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Sitios de Carácter Cuantitativo
2.
Int J Obes (Lond) ; 46(2): 307-315, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689180

RESUMEN

BACKGROUND: The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and the metabolic syndrome. This study aimed to identify genetic variants associated with impaired glucose metabolism using the obese lines BFMI861-S1 and BFMI861-S2, which are genetically closely related, but differ in several traits. BFMI861-S1 is insulin resistant and stores ectopic fat in the liver, whereas BFMI861-S2 is insulin sensitive. METHODS: In generation 10, 397 males of an advanced intercross line (AIL) BFMI861-S1 × BFMI861-S2 were challenged with a high-fat, high-carbohydrate diet and phenotyped over 25 weeks. QTL-analysis was performed after selective genotyping of 200 mice using the GigaMUGA Genotyping Array. Additional 197 males were genotyped for 7 top SNPs in QTL regions. For the prioritization of positional candidate genes whole genome sequencing and gene expression data of the parental lines were used. RESULTS: Overlapping QTL for gonadal adipose tissue weight and blood glucose concentration were detected on chromosome (Chr) 3 (95.8-100.1 Mb), and for gonadal adipose tissue weight, liver weight, and blood glucose concentration on Chr 17 (9.5-26.1 Mb). Causal modeling suggested for Chr 3-QTL direct effects on adipose tissue weight, but indirect effects on blood glucose concentration. Direct effects on adipose tissue weight, liver weight, and blood glucose concentration were suggested for Chr 17-QTL. Prioritized positional candidate genes for the identified QTL were Notch2 and Fmo5 (Chr 3) and Plg and Acat2 (Chr 17). Two additional QTL were detected for gonadal adipose tissue weight on Chr 15 (67.9-74.6 Mb) and for body weight on Chr 16 (3.9-21.4 Mb). CONCLUSIONS: QTL mapping together with a detailed prioritization approach allowed us to identify candidate genes associated with traits of the metabolic syndrome. In addition, we provided evidence for direct and indirect genetic effects on blood glucose concentration in the insulin-resistant mouse line BFMI861-S1.


Asunto(s)
Obesidad/dietoterapia , Sitios de Carácter Cuantitativo/genética , Animales , Carbohidratos/efectos adversos , Mapeo Cromosómico/métodos , Mapeo Cromosómico/estadística & datos numéricos , Dieta Alta en Grasa/efectos adversos , Dieta Alta en Grasa/estadística & datos numéricos , Modelos Animales de Enfermedad , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología , Sitios de Carácter Cuantitativo/fisiología
3.
Life Sci Alliance ; 4(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33536239

RESUMEN

Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under preclinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernible impact on systemic glucose and lipid metabolism, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.


Asunto(s)
Metabolismo Energético , Secreción de Insulina , Lipocalinas/genética , Lipocalinas/metabolismo , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Metabolismo de los Lípidos , Lipocalinas/sangre , Hígado/metabolismo , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo
4.
Mol Metab ; 41: 101042, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32565358

RESUMEN

OBJECTIVE: Altered gene expression contributes to the development of type 2 diabetes (T2D); thus, the analysis of differentially expressed genes between diabetes-susceptible and diabetes-resistant mouse models is an important tool for the determination of candidate genes that participate in the pathology. Based on RNA-seq and array data comparing pancreatic gene expression of diabetes-prone New Zealand Obese (NZO) mice and diabetes-resistant B6.V-ob/ob (B6-ob/ob) mice, the gap junction protein beta 4 (Gjb4) was identified as a putative novel T2D candidate gene. METHODS: Gjb4 was overexpressed in primary islet cells derived from C57BL/6 (B6) mice and INS-1 cells via adenoviral-mediated infection. The proliferation rate of cells was assessed by BrdU incorporation, and insulin secretion was measured under low (2.8 mM) and high (20 mM) glucose concentration. INS-1 cell apoptosis rate was determined by Western blotting assessing cleaved caspase 3 levels. RESULTS: Overexpression of Gjb4 in primary islet cells significantly inhibited the proliferation by 47%, reduced insulin secretion of primary islets (46%) and INS-1 cells (51%), and enhanced the rate of apoptosis by 63% in INS-1 cells. Moreover, an altered expression of the miR-341-3p contributes to the Gjb4 expression difference between diabetes-prone and diabetes-resistant mice. CONCLUSIONS: The gap junction protein Gjb4 is highly expressed in islets of diabetes-prone NZO mice and may play a role in the development of T2D by altering islet cell function, inducing apoptosis and inhibiting proliferation.


Asunto(s)
Conexinas/metabolismo , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Animales , Proliferación Celular/fisiología , Conexinas/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Páncreas/metabolismo
5.
Cell Rep ; 26(11): 3027-3036.e3, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865891

RESUMEN

An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MIN6 beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk.


Asunto(s)
Cilios/genética , Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Transcriptoma , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Cilios/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Ratones
6.
Cell Signal ; 51: 13-22, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055232

RESUMEN

Recently, a unimolecular tri-agonist with activity at glucagon-like peptide 1 receptor (GLP-1R), glucose dependent insulinotropic receptor, and the glucagon receptor was reported to improve glycemic control in mice. Here, we defined the underlying molecular mechanisms of enhanced insulin secretion in murine pancreatic islets for a specific tri-agonist. The tri-agonist induced an increase in insulin secretion from murine islets compared to the respective mono-agonists. GLP-1R mainly signals via activation of the Gαs pathway, but inhibition of protein kinase A (H89) and exchange protein activation by cAMP (EPAC) (ESI-09) could not completely block insulin release induced by tri-agonist. Electrophysiological observations identified a strong increase of intracellular Ca2+ concentration and whole-cell currents induced by tri-agonist via transient receptor potential channels (TRPs). Although, EPAC activation mobilizes intracellular Ca2+ via TRPs, the TRPs blockers (La3+ and Ruthenium Red) had a larger inhibitory impact than ESI-09 on tri-agonist stimulatory effects. To test for other potential mechanisms, we blocked PLC activity (U73122) which reduced the superior effect of tri-agonist to induce insulin secretion, and partially inhibited the induced Ca2+ influx. This result suggests that the relative effect of tri-agonist on insulin secretion caused by GLP-1R agonism is mediated mainly via Gαs signaling and partially by activation of PLC. Therefore, the large portion of the increased intracellular Ca2+ concentration and the enhanced whole-cell currents induced by tri-agonist might be attributable to TRP channel activation resulting from signaling through multiple G-proteins. Here, we suggest that broadened intracellular signaling may account for the superior in vivo effects observed with tri-agonism.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Incretinas/farmacología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos C57BL , Canales de Potencial de Receptor Transitorio/metabolismo , Fosfolipasas de Tipo C/metabolismo
7.
PLoS One ; 13(5): e0198016, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29813102

RESUMEN

Glucose and palmitate synergistically stimulate insulin secretion, but chronically elevated they induce apoptotic ß-cell death. The glucotoxic effect has been attributed, at least partly, to the upregulation of the oxidative stress marker thioredoxin interacting protein (TXNIP). Palmitate downregulates TXNIP expression, the functional significance of which is still under debate. This study examines the mechanism and consequence of palmitate-mediated TXNIP regulation in insulin secreting cells. Palmitate (600 µM) reduced TXNIP mRNA levels in isolated human and mouse islets independently of FFAR1/GPR40. Similar effects of palmitate were observed in INS-1E cells and mimicked by other long chain fatty acids. The lowering of TXNIP mRNA was significant already 1 h after addition of palmitate, persisted for 24 h and was directly translated to changes in TXNIP protein. The pharmacological inhibition of palmitate-induced phosphorylation of AMPK, ERK1/2, JNK and PKCα/ß by BML-275, PD98059, SP600125 and Gö6976, respectively, did not abolish palmitate-mediated TXNIP downregulation. The effect of palmitate was superimposed by a time-dependent (8 h and 24 h) decline of TXNIP mRNA and protein. This decline correlated with accumulation of secreted insulin into the medium. Accordingly, exogenously added insulin reduced TXNIP mRNA and protein levels, an effect counteracted by the insulin/IGF-1 receptor antagonist linsitinib. The inhibition of PI3K and Akt/PKB increased TXNIP mRNA levels. The histone deacetylase (HDAC1/2/3) inhibitor MS-275 completely abrogated the time-dependent, insulin-mediated reduction of TXNIP, leaving the effect of palmitate unaltered. Acute stimulation of insulin secretion and chronic accentuation of cell death by palmitate occurred independently of TXNIP regulation. On the contrary, palmitate antagonized glucose-augmented ROS production. In conclusion, glucose-induced TXNIP expression is efficiently antagonized by two independent mechanisms, namely via an autocrine activation of insulin/IGF-1 receptors involving HDAC and by palmitate attenuating oxidative stress of ß-cells.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Insulina/farmacología , Palmitatos/farmacología , Animales , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo
8.
Cell Signal ; 28(4): 272-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26776303

RESUMEN

The dual leucine zipper kinase DLK induces ß-cell apoptosis by inhibiting the transcriptional activity conferred by the ß-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to ß-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1ß, known prediabetic signals. In the present study, the regulation of DLK in ß-cells by these cytokines was investigated. Both, TNFα and IL-1ß induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the ß-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of ß-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus.


Asunto(s)
Apoptosis , Núcleo Celular/enzimología , Diabetes Mellitus Experimental/enzimología , Células Secretoras de Insulina/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Animales , Línea Celular , Núcleo Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/genética , Células Secretoras de Insulina/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Ratones , Mutación , Transporte de Proteínas/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
9.
PLoS Genet ; 11(9): e1005506, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26348837

RESUMEN

Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.


Asunto(s)
Proliferación Celular/genética , Diabetes Mellitus Experimental/genética , Islotes Pancreáticos/citología , Animales , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Factores de Determinación Derecha-Izquierda/genética , Ratones , Ratones Endogámicos C57BL , Sitios de Carácter Cuantitativo
10.
Diabetologia ; 58(3): 604-14, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25527001

RESUMEN

AIMS/HYPOTHESIS: Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. METHODS: Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. RESULTS: In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. CONCLUSIONS/INTERPRETATION: GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.


Asunto(s)
Estrógenos/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Hiperfagia/tratamiento farmacológico , Hiperfagia/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Animales , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Obesos , Nueva Zelanda
11.
Nat Commun ; 5: 4642, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25100214

RESUMEN

Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hiperuricemia/fisiopatología , Síndrome Metabólico/genética , Ácido Úrico/metabolismo , Alopurinol/química , Animales , Composición Corporal , Calorimetría , Ecocardiografía , Enterocitos/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Hiperuricemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Xantina Oxidasa/antagonistas & inhibidores
12.
Diabetes ; 63(12): 4230-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25053586

RESUMEN

Type 2 diabetes in humans and in obese mice is polygenic. In recent genome-wide association studies, genetic markers explaining a small portion of the genetic contribution to the disease were discovered. However, functional evidence linking these genes with the pathogenesis of diabetes is scarce. We performed RNA sequencing-based transcriptomics of islets from two obese mouse strains, a diabetes-susceptible (NZO) and a diabetes-resistant (B6-ob/ob) mouse, after a short glucose challenge and compared these results with human data. Alignment of 2,328 differentially expressed genes to 106 human diabetes candidate genes revealed an overlap of 20 genes, including TCF7L2, IGFBP2, CDKN2A, CDKN2B, GRB10, and PRC1. The data provide a functional validation of human diabetes candidate genes, including those involved in regulating islet cell recovery and proliferation, and identify additional candidates that could be involved in human ß-cell failure.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Islotes Pancreáticos/metabolismo , Obesidad/genética , Transcriptoma/genética , Animales , Proteínas de Ciclo Celular/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Diabetes Mellitus Tipo 2/complicaciones , Proteína Adaptadora GRB10/genética , Perfilación de la Expresión Génica , Genes p16 , Predisposición Genética a la Enfermedad , Humanos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Ratones Endogámicos , Obesidad/complicaciones , Proteína 2 Similar al Factor de Transcripción 7/genética
13.
Int J Mol Sci ; 14(9): 18989-98, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-24065099

RESUMEN

An appropriate insulin secretion by pancreatic beta-cells is necessary to maintain glucose homeostasis. A rise in plasma glucose leads to increased metabolism and an elevated cytoplasmic ATP/ADP ratio that finally triggers insulin granule exocytosis. In addition to this triggering pathway, one or more amplifying pathways-activated by amino acids or fatty acid-enhance secretion by promoting insulin granule recruitment to, and priming at, the plasma membrane. The aim of this study was to clarify the impact of the mitochondrial respiratory activity on fatty acid-induced insulin secretion that was assessed by an extracellular flux analyzer. Treatment of isolated mouse islets with glucose (20 mM) increased insulin secretion 18-fold and correlated with ATP-synthesizing respiration. Furthermore, oxygen consumption rate (OCR) significantly increased by 62% in response to glucose, whereas the addition of palmitate resulted only in a minor increase of OCR at both 2.8 mM (11%) and 20 mM glucose (21%). The addition of palmitate showed a pronounced increase of coupling efficiency (CE) at 2.8 mM glucose but no further insulin secretion. However, treatment with palmitate at 20 mM glucose increased insulin secretion about 32-fold accompanied by a small increase in CE. Thus, fatty acid induced respiration has a minor impact on insulin secretion. Our data clearly demonstrate that fatty acids in contrast to glucose play a minor role for respiration-mediated insulin secretion. In the presence of high glucose, fatty acids contribute partially to amplifying pathways of insulin secretion by further increasing mitochondrial activity in the islets of Langerhans.


Asunto(s)
Insulina/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Palmítico/farmacología , Adenosina Trifosfato/metabolismo , Animales , Glucosa/farmacología , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos DBA , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos
14.
Obes Facts ; 1(6): 292-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-20054191

RESUMEN

OBJECTIVE: We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. RESULTS: When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. CONCLUSION: These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Predisposición Genética a la Enfermedad , Células Secretoras de Insulina/patología , Obesidad/etiología , Animales , Glucemia/análisis , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Transportador de Glucosa de Tipo 2/análisis , Inmunohistoquímica , Insulina/sangre , Células Secretoras de Insulina/química , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA