Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Br J Clin Pharmacol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504437

RESUMEN

AIMS: The aim of this study was to characterize the population pharmacokinetics of AZD8233, an antisense oligonucleotide (ASO) that targets the PCSK9 transcript to reduce hepatocyte PCSK9 protein production and plasma levels. AZD8233 utilizes generation 2.5 S-constrained ethyl motif (cET) chemistry and is conjugated to a triantennary N-acetylgalactosamine (GalNAc3) ligand for targeted hepatocyte uptake. METHODS: A non-linear mixed-effect modelling approach utilizing NONMEM software was applied to AZD8233 concentration-time data from 3416 samples in 219 participants from four phase 1-2 studies, one in healthy volunteers (NCT03593785) and three in patients with dyslipidaemia (NCT04155645, NCT04641299 and NCT04823611). RESULTS: The final model described the AZD8233 plasma concentration-time profile from four phase 1-2 studies in healthy volunteers or participants with dyslipidaemia, covering a dose range of 4 to 120 mg. The pharmacokinetics of AZD8233 were adequately described by a two-compartment model with first-order absorption. The supra-proportional increase in maximum plasma concentration (Cmax ) across the observed dose range was described by non-linear Michaelis-Menten elimination (maximum elimination rate, 9.9 mg/h [12% relative standard error]; concentration yielding half-maximal elimination rate, 4.8 mg/L [18% relative standard error]). Body weight, sex, estimated glomerular filtration rate and disease status (healthy participant vs. patient with dyslipidaemia) were identified as factors affecting exposure to AZD8233. CONCLUSIONS: Covariate analysis showed body weight to be the main factor affecting exposure to AZD8233, which largely explained the higher Cmax observed in the Asian population relative to non-Asians.

2.
PLoS Comput Biol ; 20(2): e1011777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315738

RESUMEN

In systems biology and pharmacology, large-scale kinetic models are used to study the dynamic response of a system to a specific input or stimulus. While in many applications, a deeper understanding of the input-response behaviour is highly desirable, it is often hindered by the large number of molecular species and the complexity of the interactions. An approach that identifies key molecular species for a given input-response relationship and characterises dynamic properties of states is therefore highly desirable. We introduce the concept of index analysis; it is based on different time- and state-dependent quantities (indices) to identify important dynamic characteristics of molecular species. All indices are defined for a specific pair of input and response variables as well as for a specific magnitude of the input. In application to a large-scale kinetic model of the EGFR signalling cascade, we identified different phases of signal transduction, the peculiar role of Phosphatase3 during signal activation and Ras recycling during signal onset. In addition, we discuss the challenges and pitfalls of interpreting the relevance of molecular species based on knock-out simulation studies, and provide an alternative view on conflicting results on the importance of parallel EGFR downstream pathways. Beyond the applications in model interpretation, index analysis is envisioned to be a valuable tool in model reduction.


Asunto(s)
Modelos Biológicos , Transducción de Señal , Transducción de Señal/fisiología , Simulación por Computador , Biología de Sistemas/métodos , Receptores ErbB/metabolismo
3.
CPT Pharmacometrics Syst Pharmacol ; 12(12): 2038-2049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750001

RESUMEN

Disease progression in nonalcoholic steatohepatitis (NASH) is highly heterogenous and remains poorly understood. Fibrosis stage is currently the best predictor for development of end-stage liver disease and mortality. Better understanding and quantifying the impact of factors affecting NASH and fibrosis is essential to inform a clinical study design. We developed a population Markov model to describe the transition probability between fibrosis stages and mortality using a unique clinical nonalcoholic fatty liver disease cohort with serial biopsies over 3 decades. We evaluated covariate effects on all model parameters and performed clinical trial simulations to predict the fibrosis progression rate for external clinical cohorts. All parameters were estimated with good precision. Age and diagnosis of type 2 diabetes (T2D) were found to be significant predictors in the model. Increase in hepatic steatosis between visits was the most important predictor for progression of fibrosis. Fibrosis progression rate (FPR) was twofold higher for fibrosis stages 0 and 1 (F0-1) compared to fibrosis stage 2 and 3 (F2-3). A twofold increase in FPR was observed for T2D. A two-point steatosis worsening increased the FPR 11-fold. Predicted fibrosis progression was in good agreement with data from external clinical cohorts. Our fibrosis progression model shows that patient selection, particularly initial fibrosis stage distribution, can significantly impact fibrosis progression and as such the window for assessing drug efficacy in clinical trials. Our work highlights the increase in hepatic steatosis as the most important factor in increasing FPR, emphasizing the importance of well-defined lifestyle advise for reducing variability in NASH progression during clinical trials.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Hígado , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Progresión de la Enfermedad , Fibrosis
4.
CPT Pharmacometrics Syst Pharmacol ; 12(4): 432-443, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36866520

RESUMEN

Quantitative systems pharmacology (QSP) models integrate comprehensive qualitative and quantitative knowledge about pharmacologically relevant processes. We previously proposed a first approach to leverage the knowledge in QSP models to derive simpler, mechanism-based pharmacodynamic (PD) models. Their complexity, however, is typically still too large to be used in the population analysis of clinical data. Here, we extend the approach beyond state reduction to also include the simplification of reaction rates, elimination of reactions, and analytic solutions. We additionally ensure that the reduced model maintains a prespecified approximation quality not only for a reference individual but also for a diverse virtual population. We illustrate the extended approach for the warfarin effect on blood coagulation. Using the model-reduction approach, we derive a novel small-scale warfarin/international normalized ratio model and demonstrate its suitability for biomarker identification. Due to the systematic nature of the approach in comparison with empirical model building, the proposed model-reduction algorithm provides an improved rationale to build PD models also from QSP models in other applications.


Asunto(s)
Farmacología , Warfarina , Humanos , Warfarina/farmacología , Farmacología en Red , Modelos Biológicos , Coagulación Sanguínea , Algoritmos
5.
CPT Pharmacometrics Syst Pharmacol ; 11(12): 1569-1577, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36126230

RESUMEN

Here, we show model-informed drug development (MIDD) of a novel antisense oligonucleotide, targeting PCSK9 for treatment of hypocholesteremia. The case study exemplifies use of MIDD to analyze emerging data from an ongoing first-in-human study, utility of the US Food and Drug Administration MIDD pilot program to accelerate timelines, innovative use of competitor data to set biomarker targets, and use of MIDD to optimize sample size and dose selection, as well as to accelerate and de-risk a phase IIb study. The focus of the case-study is on the cross-functional collaboration and other key MIDD enablers that are critical to maximize the value of MIDD, rather than the technical application of MIDD.


Asunto(s)
Oligonucleótidos Antisentido , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/genética , Preparaciones Farmacéuticas , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Desarrollo de Medicamentos
6.
Int J Cardiol ; 365: 34-40, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35842004

RESUMEN

BACKGROUND: Leukotrienes are pro-inflammatory vasoactive lipid mediators implicated in the pathophysiology of atherosclerotic cardiovascular disease. We studied the effect of the 5-lipoxygenase-activating protein inhibitor AZD5718 on leukotriene biosynthesis and coronary microvascular function in a single-blind, phase 2a study. METHODS: Patients 7-28 days after myocardial infarction (±ST elevation), with <50% left anterior descending coronary artery stenosis and Thrombolysis in Myocardial Infarction flow grade ≥ 2 after percutaneous coronary intervention, were randomized 2:1:2 to once-daily AZD5718 200 mg or 50 mg, or placebo, in 4- and 12-week cohorts. Change in urine leukotriene E4 (uLTE4) was the primary endpoint, and coronary flow velocity reserve (CFVR; via echocardiography) was the key secondary endpoint. RESULTS: Of 129 randomized patients, 128 received treatment (200 mg, n = 52; 50 mg, n = 25; placebo, n = 51). Statistically significant reductions in uLTE4 levels of >80% were observed in both AZD5718 groups versus the placebo group at 4 and 12 weeks. No significant changes in CFVR were observed for AZD5718 versus placebo. Adverse events (AEs) occurred in 12/18, 3/6 and 6/13 patients receiving 200 mg, 50 mg and placebo, respectively, in the 4-week cohort, and in 27/34, 14/19 and 24/38 patients, respectively, in the 12-week cohort. Serious AEs in seven patients receiving AZD5718 and four receiving placebo were not treatment-related, and there were no deaths. CONCLUSIONS: In patients with recent myocardial infarction, AZD5718 was well tolerated, and leukotriene biosynthesis was dose-dependently inhibited. No significant changes in CFVR were detected. CLINICALTRIALS: gov identifier: NCT03317002.


Asunto(s)
Inhibidores de Proteína Activante de 5-Lipoxigenasa , Infarto del Miocardio , Inhibidores de Proteína Activante de 5-Lipoxigenasa/efectos adversos , Estenosis Coronaria/tratamiento farmacológico , Humanos , Infarto del Miocardio/tratamiento farmacológico , Pirazoles , Método Simple Ciego , Resultado del Tratamiento
7.
Hepatol Commun ; 6(10): 2689-2701, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833455

RESUMEN

In nonalcoholic fatty liver disease (NAFLD) the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 variant is a contributor. In mice, the Pnpla3 148M variant accumulates on lipid droplets and probably leads to sequestration of a lipase cofactor leading to impaired mobilization of triglycerides. To advance our understanding of the localization and abundance of PNPLA3 protein in humans, we used liver biopsies from patients with NAFLD to investigate the link to NAFLD and the PNPLA3 148M genotype. We experimentally qualified an antibody against human PNPLA3. Hepatic PNPLA3 protein fractional area and localization were determined by immunohistochemistry in biopsies from a well-characterized NAFLD cohort of 67 patients. Potential differences in hepatic PNPLA3 protein levels among patients related to degree of steatosis, lobular inflammation, ballooning, and fibrosis, and PNPLA3 I148M gene variants were assessed. Immunohistochemistry staining in biopsies from patients with NAFLD showed that hepatic PNPLA3 protein was predominantly localized to the membranes of small and large lipid droplets in hepatocytes. PNPLA3 protein levels correlated strongly with steatosis grade (p = 0.000027) and were also significantly higher in patients with lobular inflammation (p = 0.009), ballooning (p = 0.022), and significant fibrosis (stage 2-4, p = 0.014). In addition, PNPLA3 levels were higher in PNPLA3 rs738409 148M (CG, GG) risk allele carriers compared to 148I (CC) nonrisk allele carriers (p = 0.0029). Conclusion: PNPLA3 protein levels were associated with increased hepatic lipid content and disease severity in patients with NAFLD and were higher in PNPLA3 rs738409 (148M) risk allele carriers. Our hypothesis that increased hepatic levels of PNPLA3 may be part of the pathophysiological mechanism of NAFLD is supported.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Aciltransferasas , Alelos , Animales , Fibrosis , Humanos , Inflamación/genética , Lipasa/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Fosfolipasas/genética , Fosfolipasas A2 Calcio-Independiente/genética , Triglicéridos
8.
Br J Clin Pharmacol ; 88(11): 4839-4844, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35653229

RESUMEN

AIMS: AZD8233 is a proprotein convertase subtilisin/kexin type 9 (PCSK9) antisense oligonucleotide under development for treatment of hypercholesterolaemia. A prespecified concentration-QT analysis was performed based on data from a single ascending dose study that was prospectively designed to act as a TQT study substitute. METHODS: Subcutaneous single doses ranging from 4 to 120 mg were evaluated in 73 adult healthy male subjects. Time-matched 12-lead digital ECG and plasma concentrations (n = 15) were measured at baseline and up to 48 hours after dose in each subject. The analysis was performed using a linear mixed effect model, where change from baseline QTc (ΔQTc) was a dependent variable and time-matched AZD8233 concentration was an independent variable. RESULTS: The high clinical exposure scenario was defined as 1.7-fold the expected Cmax following an assumed therapeutic dose of 60 mg, which corresponds to AZD8233 plasma concentration of 1.39 µg/mL. Estimated placebo-corrected and baseline-adjusted QTcF interval (ΔΔQTcF) at this concentration was -2.2 ms (90% CI: -4.11, -0.28). Furthermore, the upper 90% ΔΔQTcF confidence interval was estimated to be below 10 ms at all observed concentrations. CONCLUSION: As the effect on ΔΔQTcF is below the threshold for regulatory concern (10 ms), it can be concluded that AZD8233 does not induce QTcF prolongation at the high clinical exposure scenario.


Asunto(s)
Síndrome de QT Prolongado , Oligonucleótidos , Adulto , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Electrocardiografía , Frecuencia Cardíaca , Humanos , Síndrome de QT Prolongado/inducido químicamente , Masculino , Oligonucleótidos Antisentido/efectos adversos , Proproteína Convertasa 9 , Subtilisinas/farmacología
9.
Kidney Int Rep ; 6(11): 2803-2810, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34805632

RESUMEN

INTRODUCTION: Patients with chronic kidney disease (CKD) remain at risk for kidney and cardiovascular events resulting from residual albuminuria, despite available treatments. Leukotrienes are proinflammatory and vasoconstrictive lipid mediators implicated in the etiology of chronic inflammatory diseases. AZD5718 is a potent, selective, and reversible 5-lipoxygenase activating protein (FLAP) inhibitor that suppresses leukotriene production. METHODS: FLAIR (FLAP Inhibition in Renal disease) is an ongoing phase 2b, randomized, double-blind, placebo-controlled, multicenter study to evaluate the efficacy and safety of AZD5718 in patients with proteinuric CKD with or without type 2 diabetes. Participants receive AZD5718 at 3 different doses or placebo once daily for 12 weeks, followed by an 8-week extension in which they also receive dapagliflozin (10 mg/d) as anticipated future standard of care. The planned sample size is 632 participants, providing 91% power to detect 30% reduction in urinary albumin-to-creatinine ratio (UACR) between the maximum dose of AZD5718 and placebo. The dose-response effect of AZD5718 on UACR after the dapagliflozin extension is the primary efficacy objective. Key secondary objectives are the dose-response effect of AZD5718 plus current standard of care on UACR and acute effects of treatment on the estimated glomerular filtration rate. Safety, tolerability, AZD5718 pharmacokinetics, and analyses of biomarkers that may predict or reflect response to AZD5718 are additional objectives. CONCLUSION: FLAIR will provide data on the effects of 5-lipoxygenase pathway inhibition in patients with proteinuric CKD with or without type 2 diabetes, and will form the basis for future clinical trials (ClinicalTrials.gov: NCT04492722).

10.
Clin Drug Investig ; 41(10): 895-905, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34546534

RESUMEN

BACKGROUND AND OBJECTIVE: AZD5718, a 5-lipoxygenase-activating protein (FLAP) inhibitor, is in clinical development for treatment of coronary artery disease (CAD) and chronic kidney disease (CKD). This study evaluated AZD5718 pharmacokinetics, pharmacodynamics, and tolerability in healthy male Japanese subjects. METHODS: Four cohorts of eight Japanese subjects were randomized to receive oral doses of AZD5718 (60, 180, 360, and 600 mg) or matching placebo administered as a single dose on Day 1 and as once-daily doses from Day 3 to Day 10 in fasted conditions. Pharmacokinetic, pharmacodynamic, and safety data were collected. RESULTS: The pharmacokinetics characteristics of AZD5718 in Japanese male subjects were similar to those reported in a previous study, and the pharmacokinetics were characterized as rapid absorption with median time to reach maximum concentration (Tmax) of 1-2 h Creatine-normalized urine maximum concentration (Cmax) with mean half-lives ranging from 8 to 21 h, and supra-proportional increase in exposure over the 60-600 mg dose range evaluated. Also, an increase in steady-state area under the concentration-time curve (AUC) compared to the first dose was observed. After both single and multiple doses of AZD5718, a clear dose/concentration-effect relationship was shown for urinary leukotriene E4 (LTE4) versus AZD5718 exposure with > 80 % inhibition at plasma concentrations in the lower nM range. No clinically relevant safety and tolerability findings were observed. CONCLUSIONS: The observed pharmacokinetics and pharmacodynamics were similar to reported data for non-Japanese healthy subjects, which support further evaluation of AZD5718 at similar doses/exposures in Japanese and non-Japanese subjects for future evaluation in patients with CAD and CKD.


Asunto(s)
Proteínas Activadoras de la 5-Lipooxigenasa , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Voluntarios Sanos , Humanos , Japón , Masculino , Pirazoles
11.
Sci Transl Med ; 13(593)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980578

RESUMEN

Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol and are used for treatment of dyslipidemia. Current PCSK9 inhibitors are administered via subcutaneous injection. We present a highly potent, chemically modified PCSK9 antisense oligonucleotide (ASO) with potential for oral delivery. Past attempts at oral delivery using earlier-generation ASO chemistries and transient permeation enhancers provided encouraging data, suggesting that improving potency of the ASO could make oral delivery a reality. The constrained ethyl chemistry and liver targeting enabled by N-acetylgalactosamine conjugation make this ASO highly potent. A single subcutaneous dose of 90 mg reduced PCSK9 by >90% in humans with elevated LDL cholesterol and a monthly subcutaneous dose of around 25 mg is predicted to reduce PCSK9 by 80% at steady state. To investigate the feasibility of oral administration, the ASO was coformulated in a tablet with sodium caprate as permeation enhancer. Repeated oral daily dosing in dogs resulted in a bioavailability of 7% in the liver (target organ), about fivefold greater than the plasma bioavailability. Target engagement after oral administration was confirmed by intrajejunal administration of a rat-specific surrogate ASO in solution with the enhancer to rats and by plasma PCSK9 and LDL cholesterol lowering in cynomolgus monkey after tablet administration. On the basis of an assumption of 5% liver bioavailability after oral administration in humans, a daily dose of 15 mg is predicted to reduce circulating PCSK9 by 80% at steady state, supporting the development of the compound for oral administration to treat dyslipidemia.


Asunto(s)
Oligonucleótidos Antisentido , Inhibidores de PCSK9 , Animales , Perros , Macaca fascicularis , Ratas , Serina Endopeptidasas
12.
J Pharmacokinet Pharmacodyn ; 45(1): 139-157, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29243176

RESUMEN

A growing understanding of complex processes in biology has led to large-scale mechanistic models of pharmacologically relevant processes. These models are increasingly used to study the response of the system to a given input or stimulus, e.g., after drug administration. Understanding the input-response relationship, however, is often a challenging task due to the complexity of the interactions between its constituents as well as the size of the models. An approach that quantifies the importance of the different constituents for a given input-output relationship and allows to reduce the dynamics to its essential features is therefore highly desirable. In this article, we present a novel state- and time-dependent quantity called the input-response index that quantifies the importance of state variables for a given input-response relationship at a particular time. It is based on the concept of time-bounded controllability and observability, and defined with respect to a reference dynamics. In application to the brown snake venom-fibrinogen (Fg) network, the input-response indices give insight into the coordinated action of specific coagulation factors and about those factors that contribute only little to the response. We demonstrate how the indices can be used to reduce large-scale models in a two-step procedure: (i) elimination of states whose dynamics have only minor impact on the input-response relationship, and (ii) proper lumping of the remaining (lower order) model. In application to the brown snake venom-fibrinogen network, this resulted in a reduction from 62 to 8 state variables in the first step, and a further reduction to 5 state variables in the second step. We further illustrate that the sequence, in which a recursive algorithm eliminates and/or lumps state variables, has an impact on the final reduced model. The input-response indices are particularly suited to determine an informed sequence, since they are based on the dynamics of the original system. In summary, the novel measure of importance provides a powerful tool for analysing the complex dynamics of large-scale systems and a means for very efficient model order reduction of nonlinear systems.


Asunto(s)
Modelos Biológicos , Farmacología/métodos , Biología de Sistemas/métodos , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Fibrinógeno/metabolismo , Humanos , Dinámicas no Lineales , Venenos de Serpiente/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...