Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 34(10): ar95, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379206

RESUMEN

Almost all mitochondrial proteins are synthesized in the cytosol and subsequently targeted to mitochondria. The accumulation of nonimported precursor proteins occurring upon mitochondrial dysfunction can challenge cellular protein homeostasis. Here we show that blocking protein translocation into mitochondria results in the accumulation of mitochondrial membrane proteins at the endoplasmic reticulum, thereby triggering the unfolded protein response (UPRER). Moreover, we find that mitochondrial membrane proteins are also routed to the ER under physiological conditions. The level of ER-resident mitochondrial precursors is enhanced by import defects as well as metabolic stimuli that increase the expression of mitochondrial proteins. Under such conditions, the UPRER is crucial to maintain protein homeostasis and cellular fitness. We propose the ER serves as a physiological buffer zone for those mitochondrial precursors that cannot be immediately imported into mitochondria while engaging the UPRER to adjust the ER proteostasis capacity to the extent of precursor accumulation.


Asunto(s)
Estrés del Retículo Endoplásmico , Biogénesis de Organelos , Estrés del Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/metabolismo
2.
EMBO J ; 40(16): e107913, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34191328

RESUMEN

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Línea Celular , Citosol/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Saccharomyces cerevisiae
3.
Mol Biol Cell ; 32(8): 664-674, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596095

RESUMEN

For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...