Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190514

RESUMEN

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Asunto(s)
Sequías , Ecosistema , Pradera , Ciclo del Carbono , Cambio Climático , Proteínas Tirosina Quinasas Receptoras
2.
Ecology ; 105(2): e4220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037285

RESUMEN

Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community-weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community-weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community-weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community-weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community-weighted trait means as well as their functional diversity across grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Sequías , Plantas , América del Norte , Asia Oriental , Nitrógeno
3.
Oecologia ; 204(1): 83-93, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38108892

RESUMEN

Increases in extremely large precipitation events (deluges) and shifts in seasonal patterns of water availability with climate change will both have important consequences for ecosystem function, particularly in water-limited regions. While previous work in the semi-arid shortgrass steppe of northeastern Colorado has demonstrated this ecosystem's strong sensitivity to growing season deluges, our understanding of ecosystem responses to deluges during the dormant season is limited. Here, we imposed experimental 100 mm deluges (~ 30% of mean annual precipitation) in either September or October in a native C4-dominated shortgrass steppe ecosystem to evaluate the impact of this post-growing season shift in water availability during the autumn and the following growing season. Soil moisture for both deluge treatments remained elevated compared with ambient levels through April as spring precipitation was atypically low. Despite overall low levels of productivity with spring drought, these deluges from the previous autumn increased aboveground net primary production (ANPP), primarily due to increases with C4 grasses. C3 ANPP was also enhanced, largely due to an increase in the annual C3 grass, Vulpia octoflora, in the October deluge treatment. While spring precipitation has historically been the primary determinant of ecosystem function in this ecosystem, this combination of two climate extremes-an extremely wet autumn followed by a naturally-occurring spring drought-revealed the potential for meaningful carryover effects from autumn precipitation. With climate change increasing the likelihood of extremes during all seasons, experiments which create novel climatic conditions can provide new insight into the dynamics of ecosystem functioning in the future.


Asunto(s)
Ecosistema , Pradera , Estaciones del Año , Sequías , Lluvia , Poaceae/fisiología , Agua
4.
Glob Chang Biol ; 29(23): 6453-6477, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814910

RESUMEN

Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process-based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.


Asunto(s)
Ecosistema , Plantas , Bosques , Árboles , Simulación por Computador
5.
Front Plant Sci ; 14: 1142786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113592

RESUMEN

Phenology and productivity are important functional indicators of grassland ecosystems. However, our understanding of how intra-annual precipitation patterns affect plant phenology and productivity in grasslands is still limited. Here, we conducted a two-year precipitation manipulation experiment to explore the responses of plant phenology and productivity to intra-annual precipitation patterns at the community and dominant species levels in a temperate grassland. We found that increased early growing season precipitation enhanced the above-ground biomass of the dominant rhizome grass, Leymus chinensis, by advancing its flowering date, while increased late growing season precipitation increased the above-ground biomass of the dominant bunchgrass, Stipa grandis, by delaying senescence. The complementary effects in phenology and biomass of the dominant species, L. chinensis and S. grandis, maintained stable dynamics of the community above-ground biomass under intra-annual precipitation pattern variations. Our results highlight the critical role that intra-annual precipitation and soil moisture patterns play in the phenology of temperate grasslands. By understanding the response of phenology to intra-annual precipitation patterns, we can more accurately predict the productivity of temperate grasslands under future climate change.

6.
Oecologia ; 201(2): 311-322, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640197

RESUMEN

Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment. We expected that traits of species from drier regions would be more responsive to reduced water availability and that this would make these species more resistant to low soil moisture than species from wetter regions. All four species grew taller, produced more biomass, and increased total root length in wetter treatments. Each species reduced its leaf turgor loss point (TLP) in drier conditions, but only two species (one xeric, one mesic) maintained leaf water potential above TLP. We identified a suite of traits that clearly distinguished species from one another, but, surprisingly, these traits were relatively unresponsive to reduced soil moisture. Specifically, more xeric species produced thinner roots with higher specific root length and had a lower root mass fraction. This suggest that root traits are critical for distinguishing species from one another but might not respond strongly to changing water availability, though this warrants further investigation in the field. Overall, we found that NPP of these dominant grass species responded similarly to varying levels of soil moisture despite differences in species morphology, physiology, and habitat of origin.


Asunto(s)
Ecosistema , Suelo , Poaceae/fisiología , Biomasa , Hojas de la Planta/fisiología , Agua/fisiología
7.
Glob Chang Biol ; 29(8): 2351-2362, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36630538

RESUMEN

Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely impaired ecosystem services. These NEGs can result from diverse natural and anthropogenic causes, especially climate extremes (CEs). However, the relationship between NEGs and many types of CEs remains largely unknown at regional and global scales. Here, with satellite-derived vegetation index data and supporting tree-ring chronologies, we identify periods of NEGs from 1981 to 2015 across the global land surface. We find 70% of these NEGs are attributable to five types of CEs and their combinations, with compound CEs generally more detrimental than individual ones. More importantly, we find that dominant CEs for NEGs vary by biome and region. Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and high latitudes, whereas soil drought and related compound extremes are primarily responsible for NEGs in wet tropical, arid and semi-arid regions. Key characteristics (e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegetation) that determine the dominance of CEs are also region- and biome-dependent. For example, in the wet tropics, dominant individual CEs have both higher intensity and longer duration than non-dominant ones. However, in the dry tropics and some temperate regions, a longer CE duration is more important than higher intensity. Our work provides the first global accounting of the attribution of NEGs to diverse climatic extremes. Our analysis has important implications for developing climate-specific disaster prevention and mitigation plans among different regions of the globe in a changing climate.


Asunto(s)
Cambio Climático , Ecosistema , Árboles , Suelo , Sequías
8.
Oecologia ; 201(1): 143-154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36507971

RESUMEN

Ecosystems are faced with an onslaught of co-occurring global change drivers. While frequently studied independently, the effects of multiple global change drivers have the potential to be additive, antagonistic, or synergistic. Global warming, for example, may intensify the effects of more variable precipitation regimes with warmer temperatures increasing evapotranspiration and thereby amplifying the effect of already dry soils. Here, we present the long-term effects (11 years) of altered precipitation patterns (increased intra-annual variability in the growing season) and warming (1 °C year-round) on plant community composition and aboveground net primary productivity (ANPP), a key measure of ecosystem functioning in mesic tallgrass prairie. Based on past results, we expected that increased precipitation variability and warming would have additive effects on both community composition and ANPP. Increased precipitation variability altered plant community composition and increased richness, with no effect on ANPP. In contrast, warming decreased ANPP via reduction in grass stems and biomass but had no effect on the plant community. Contrary to expectations, across all measured variables, precipitation and warming treatments had no interactive effects. While treatment interactions did not occur, each treatment did individually impact a different component of the ecosystem (i.e., community vs. function). Thus, different aspects of the ecosystem may be sensitive to different global change drivers in mesic grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Lluvia , Biomasa , Poaceae , Plantas , Cambio Climático
9.
Ecology ; 104(2): e3920, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36416074

RESUMEN

Recurrent droughts are an inevitable consequence of climate change, yet how grasslands respond to such events is unclear. We conducted a 6-year rainfall manipulation experiment in a semiarid grassland that consisted of an initial 2-year drought (2015-2016), followed by a recovery period (2017-2018) and, finally, a second 2-year drought (2019-2020). In each year, we estimated aboveground net primary productivity (ANPP), species richness, community-weighted mean (CWM) plant traits, and several indices of functional diversity. The initial drought led to reduced ANPP, which was primarily driven by limited growth of forbs in the first year and grasses in the second year. Total ANPP completely recovered as the rapid recovery of grass productivity compensated for the slow recovery of forb productivity. The subsequent drought led to a greater reduction in total ANPP than the initial drought due to the greater decline of both grass and forb productivity. The structural equation models revealed that soil moisture influenced ANPP responses directly during the initial drought, and indirectly during the subsequent drought by lowering functional diversity, which resulted in reduced total ANPP. Additionally, ANPP was positively influenced by CWM plant height and leaf nitrogen during the recovery period and recurrent drought, respectively. Overall, the greater impact of the second drought on ecosystem function than the initial drought, as well as the underlying differential mechanism, underscores the need for an understanding of how increased drought frequency may alter semiarid grassland functioning.


Asunto(s)
Ecosistema , Pradera , Sequías , Suelo , Poaceae
10.
Sci Total Environ ; 822: 153589, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35122840

RESUMEN

Plant nonstructural carbohydrates (NSC) can reflect community and ecosystem responses to environmental changes such as water availability. Climate change is predicted to increase aridity and the frequency of extreme drought events in grasslands, but it is unclear how community-scale NSC will respond to drought or how such responses may vary along aridity gradients. We experimentally imposed a 4-year drought in six grasslands along a natural aridity gradient and measured the community-weighted mean of leaf soluble sugar (SSCWM) and total leaf NSC (NSCCWM) concentrations. We observed a bell-shape relationship across this gradient, where SSCWM and total NSCCWM concentrations were lowest at intermediate aridity, with this pattern driven primarily by species turnover. Drought manipulation increased both SSCWM and total NSCCWM concentrations at one moderately arid grassland but decreased total NSCCWM concentrations at one moist site. These differential responses to experimental drought depended on the relative role of species turnover and intraspecific variation in driving shifts in SSCWM and total NSCCWM concentrations. Specifically, the synergistic effects of species turnover and intraspecific variation drove the responses of leaf NSC concentrations to drought, while their opposing effects diminished the effect of drought on plant SSCWM and total NSCCWM concentrations. Plant resource strategies were more acquisitive, via higher chlorophyllCWM concentration, to offset reduced NSCCWM concentrations and net aboveground primary productivity (ANPP) with increasing aridity at more mesic sites, but more conservative (i.e., decreased plant heightCWM and ANPP) to reduce NSC consumption at drier sites. The relationship between water availability and NSCCWM concentrations may contribute to community drought resistance and improve plant viability and adaptation strategies to a changing climate.


Asunto(s)
Sequías , Pradera , Cambio Climático , Carbohidratos de la Dieta , Ecosistema
11.
Glob Chang Biol ; 28(8): 2611-2621, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35076159

RESUMEN

Climate change is predicted to increase the frequency and intensity of extreme events including droughts and large precipitation events or "deluges." While many studies have focused on the ecological impacts of individual events (e.g., a heat wave), there is growing recognition that when extreme events co-occur as compound extremes, (e.g., a heatwave during a drought), the additive effects on ecosystems are often greater than either extreme alone. In this study, we assessed a unique type of extreme-a contrasting compound extreme-where the extremes may have offsetting, rather than additive ecological effects, by examining how a deluge during a drought impacts productivity and carbon cycling in a semi-arid grassland. The experiment consisted of four treatments: a control (average precipitation), an extreme drought (<5th percentile), an extreme drought interrupted by a single deluge (>95th percentile), or an extreme drought interrupted by the equivalent amount of precipitation added in several smaller events. We highlight three key results. First, extreme drought resulted in early senescence, reduced carbon uptake, and a decline in net primary productivity relative to the control treatment. Second, the deluge imposed during extreme drought stimulated carbon fluxes and plant growth well above the levels of both the control and the drought treatment with several additional smaller rainfall events, emphasizing the importance of precipitation amount, event size, and timing. Third, while the deluge's positive effects on carbon fluxes and plant growth persisted for 1 month, the deluge did not completely offset the negative effects of extreme drought on end-of-season productivity. Thus, in the case of these contrasting hydroclimatic extremes, a deluge during a drought can stimulate temporally dynamic ecosystem processes (e.g., net ecosystem exchange) while only partially compensating for reductions in ecosystem functions over longer time scales (e.g., aboveground net primary productivity).


Asunto(s)
Sequías , Ecosistema , Carbono , Ciclo del Carbono , Cambio Climático , Pradera , Lluvia
12.
New Phytol ; 233(1): 119-125, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506636

RESUMEN

Seasonal patterns of water availability can differ dramatically among ecosystems, with well-known consequences for ecosystem structure and functioning. Less appreciated is that climate change can shift the seasonality of water availability (e.g. to wetter springs, drier summers), resulting in both subtle and profound ecological impacts. Here we (1) review evidence that the seasonal availability of water is being altered in ecosystems worldwide, (2) explore several mechanisms potentially driving these changes, and (3) highlight the breadth of ecological consequences resulting from shifts in the seasonality of water availability. We conclude that seasonal patterns of water availability are changing globally, but in regionally specific ways requiring more rigorous and nuanced assessments of ecosystem vulnerability as well as the ecological consequences.


Asunto(s)
Cambio Climático , Ecosistema , Estaciones del Año , Agua
13.
Ecology ; 102(10): e03465, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34236696

RESUMEN

Extreme drought decreases aboveground net primary production (ANPP) in most grasslands, but the magnitude of ANPP reductions varies especially in C3 -dominated grasslands. Because the mechanisms underlying such differential ecosystem responses to drought are not well resolved, we experimentally imposed an extreme 4-yr drought (2015-2018) in two C3 grasslands that differed in aridity. These sites had similar annual precipitation and dominant grass species (Leymus chinensis) but different annual temperatures and thus water availability. Drought treatments differentially affected these two semiarid grasslands, with ANPP of the drier site reduced more than at the wetter site. Structural equation modeling revealed that community-weighted means for some traits modified relationships between soil moisture and ANPP, often due to intraspecific variation. Specifically, drought reduced community mean plant height at both sites, resulting in a reduction in ANPP beyond that attributable to reduced soil moisture alone. Higher community mean leaf carbon content enhanced the negative effects of drought on ANPP at the drier site, and ANPP-soil-moisture relationships were influenced by soil C:N ratio at the wetter site. Importantly, neither species richness nor functional dispersion were significantly correlated with ANPP at either site. Overall, as expected, soil moisture was a dominant, direct driver of ANPP response to drought, but differential sensitivity to drought in these two grasslands was also related to soil fertility and plant traits.


Asunto(s)
Sequías , Suelo , Ecosistema , Pradera , Plantas , Poaceae , Lluvia
14.
Glob Chang Biol ; 27(20): 5186-5197, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34185345

RESUMEN

Satellite-derived sun-induced chlorophyll fluorescence (SIF) has been increasingly used for estimating gross primary production (GPP). However, the relationship between SIF and GPP has not been well defined, impeding the translation of satellite observed SIF to GPP. Previous studies have generally assumed a linear relationship between SIF and GPP at daily and longer time scales, but support for this assumption is lacking. Here, we used the GPP/SIF ratio to investigate seasonal variations in the relationship between SIF and GPP over the Northern Hemisphere (NH). Based on multiple SIF products and MODIS and FLUXCOM GPP data, we found strong seasonal hump-shaped patterns for the GPP/SIF ratio over northern latitudes, with higher values in the summer than in the spring or autumn. This hump-shaped GPP/SIF seasonal variation was confirmed by examining different SIF products and was evident for most vegetation types except evergreen broadleaf forests. The seasonal amplitude of the GPP/SIF ratio decreased from the boreal/arctic region to drylands and the tropics. For most of the NH, the lowest GPP/SIF values occurred in October or September, while the maximum GPP/SIF values were evident in June and July. The most pronounced seasonal amplitude of GPP/SIF occurred in intermediate temperature and precipitation ranges. GPP/SIF was positively related to temperature in the early and late parts of the growing season, but not during the peak growing months. These shifting relationships between temperature and GPP/SIF across different months appeared to play a key role in the seasonal dynamics of GPP/SIF. Several mechanisms may explain the patterns we observed, and future research encompassing a broad range of climate and vegetation settings is needed to improve our understanding of the spatial and temporal relationships between SIF and GPP. Nonetheless, the strong seasonal variation in GPP/SIF we identified highlights the importance of incorporating this behavior into SIF-based GPP estimations.


Asunto(s)
Clorofila , Fotosíntesis , Clorofila/análisis , Ecosistema , Monitoreo del Ambiente , Fluorescencia , Estaciones del Año
15.
Ecology ; 102(9): e03437, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34133764

RESUMEN

The frequency and magnitude of deluges (extremely large rain events) are increasing globally as the atmosphere warms. Small-scale experiments suggest that semiarid grasslands are particularly sensitive to both the timing and size of deluge events. However, the assumption that plot-scale results can be extrapolated across landscapes with variable soil textures, plant communities, and grazing regimes has seldom been tested, despite being key to forecasting regional consequences of precipitation extremes. We used precipitation data from an extensive rain gauge network to identify natural deluges (mean size = 60 ± 31 mm, 1984-2012) that occurred across a ˜60-km2 heterogeneous native shortgrass steppe landscape in Colorado. We then related spatial variation in deluge precipitation to postdeluge responses in canopy greenness (normalized difference vegetation index, NDVI) via satellite imagery. Consistent with results from experiments, this semiarid grassland was most sensitive to mid-growing-season deluges, and postdeluge canopy greenness usually increased linearly (67% of the time) with increasing deluge size. This suggests that aboveground productivity in these semiarid systems will likely increase, rather than asymptote, with forecasted increases in deluge size. Importantly, differences in grazing regime did not significantly alter deluge responses, indicating that these patterns are robust to this widespread management practice.


Asunto(s)
Inundaciones , Pradera , Lluvia , Colorado
16.
Ecol Lett ; 24(9): 1892-1904, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34170615

RESUMEN

Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments-species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.


Asunto(s)
Biodiversidad , Ecosistema , Plantas
17.
Oecologia ; 197(4): 1017-1026, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33416961

RESUMEN

Drought, defined as a marked deficiency of precipitation relative to normal, occurs as periods of below-average precipitation or complete failure of precipitation inputs, and can be limited to a single season or prolonged over multiple years. Grasslands are typically quite sensitive to drought, but there can be substantial variability in the magnitude of loss of ecosystem function. We hypothesized that differences in how drought occurs may contribute to this variability. In four native Great Plains grasslands (three C4- and one C3-dominated) spanning a ~ 500-mm precipitation gradient, we imposed drought for four consecutive years by (1) reducing each rainfall event by 66% during the growing season (chronic drought) or (2) completely excluding rainfall during a shorter portion of the growing season (intense drought). The drought treatments were similar in magnitude but differed in the following characteristics: event number, event size and length of dry periods. We observed consistent drought-induced reductions (28-37%) in aboveground net primary production (ANPP) only in the C4-dominated grasslands. In general, intense drought reduced ANPP more than chronic drought, with little evidence that drought duration altered this pattern. Conversely, belowground net primary production (BNPP) was reduced by drought in all grasslands (32-64%), with BNPP reductions greater in intense vs. chronic drought treatments in the most mesic grassland. We conclude that grassland productivity responses to drought did not strongly differ between these two types of drought, but when differences existed, intense drought consistently reduced function more than chronic drought.


Asunto(s)
Sequías , Pradera , Ecosistema , Poaceae , Lluvia
18.
Glob Chang Biol ; 27(6): 1144-1156, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33002262

RESUMEN

Effective use of solar-induced chlorophyll fluorescence (SIF) to estimate and monitor gross primary production (GPP) in terrestrial ecosystems requires a comprehensive understanding and quantification of the relationship between SIF and GPP. To date, this understanding is incomplete and somewhat controversial in the literature. Here we derived the GPP/SIF ratio from multiple data sources as a diagnostic metric to explore its global-scale patterns of spatial variation and potential climatic dependence. We found that the growing season GPP/SIF ratio varied substantially across global land surfaces, with the highest ratios consistently found in boreal regions. Spatial variation in GPP/SIF was strongly modulated by climate variables. The most striking pattern was a consistent decrease in GPP/SIF from cold-and-wet climates to hot-and-dry climates. We propose that the reduction in GPP/SIF with decreasing moisture availability may be related to stomatal responses to aridity. Furthermore, we show that GPP/SIF can be empirically modeled from climate variables using a machine learning (random forest) framework, which can improve the modeling of ecosystem production and quantify its uncertainty in global terrestrial biosphere models. Our results point to the need for targeted field and experimental studies to better understand the patterns observed and to improve the modeling of the relationship between SIF and GPP over broad scales.


Asunto(s)
Clorofila , Ecosistema , Clorofila/análisis , Monitoreo del Ambiente , Fluorescencia , Fotosíntesis , Luz Solar
19.
Glob Chang Biol ; 27(6): 1157-1169, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33295017

RESUMEN

Climate change has intensified the hydrologic cycle globally, increasing the magnitude and frequency of large precipitation events, or deluges. Dryland ecosystems are expected to be particularly responsive to increases in deluge size, as their ecological processes are largely dependent on distinct soil moisture pulses. To better understand how increasing deluge size will affect ecosystem function, we conducted a field experiment in a native semiarid shortgrass steppe (Colorado, USA). We quantified ecological responses to a range of deluge sizes, from moderate to extreme, with the goal of identifying response patterns and thresholds beyond which ecological processes would not increase further (saturate). Using a replicated regression approach, we imposed single deluges that ranged in size from 20 to 120 mm (82.3rd to >99.9th percentile of historical event size) on undisturbed grassland plots. We quantified pre- and postdeluge responses in soil moisture, soil respiration, and canopy greenness, as well as leaf water potential, growth, and flowering of the dominant grass species (Bouteloua gracilis). We also measured end of season above- and belowground net primary production (ANPP, BNPP). As expected, this water-limited ecosystem responded strongly to the applied deluges, but surprisingly, most variables increased linearly with deluge size. We found little evidence for response thresholds within the range of deluge sizes imposed, at least during this dry year. Instead, response patterns reflected the linear increase in the duration of elevated soil moisture (2-22 days) with increasing event size. Flowering of B. gracilis and soil respiration responded particularly strongly to deluge size (14- and 4-fold increases, respectively), as did ANPP and BNPP (~60% increase for both). Overall, our results suggest that this semiarid grassland will respond positively and linearly to predicted increases in deluge size, and that event sizes may need to exceed historical magnitudes, or occur during wet years, before responses saturate.


Asunto(s)
Ecosistema , Pradera , Colorado , Poaceae , Lluvia , Suelo
20.
Glob Chang Biol ; 27(6): 1127-1140, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33295684

RESUMEN

In terrestrial ecosystems, climate change forecasts of increased frequencies and magnitudes of wet and dry precipitation anomalies are expected to shift precipitation-net primary productivity (PPT-NPP) relationships from linear to nonlinear. Less understood, however, is how future changes in the duration of PPT anomalies will alter PPT-NPP relationships. A review of the literature shows strong potential for the duration of wet and dry PPT anomalies to impact NPP and to interact with the magnitude of anomalies. Within semi-arid and mesic grassland ecosystems, PPT gradient experiments indicate that short-duration (1 year) PPT anomalies are often insufficient to drive nonlinear aboveground NPP responses. But long-term studies, within desert to forest ecosystems, demonstrate how multi-year PPT anomalies may result in increasing impacts on NPP through time, and thus alter PPT-NPP relationships. We present a conceptual model detailing how NPP responses to PPT anomalies may amplify with the duration of an event, how responses may vary in xeric vs. mesic ecosystems, and how these differences are most likely due to demographic mechanisms. Experiments that can unravel the independent and interactive impacts of the magnitude and duration of wet and dry PPT anomalies are needed, with multi-site long-term PPT gradient experiments particularly well-suited for this task.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Modelos Teóricos , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...