Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ground Water ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776269

RESUMEN

This note describes the development and testing of a novel, programmable reversing flow 1D (R1D) experimental column apparatus designed to investigate reaction, sorption, and transport of solutes in aquifers within dynamic reversing flow zones where waters with different chemistries mix. The motivation for constructing this apparatus was to understand the roles of mixing and reaction on arsenic discharging through a tidally fluctuating riverbank. The apparatus can simulate complex transient flux schedules similar to natural flow regimes The apparatus uses an Arduino microcontroller to control flux magnitude through two peristaltic pumps. Solenoid valves control flow direction from two separate reservoirs. In-line probes continually measure effluent electrical conductance, pH, oxidation-reduction potential, and temperature. To understand how sensitive physical solute transport is to deviations from the real hydrograph of the tidally fluctuating river, two experiments were performed using: (1) a simpler constant magnitude, reversing flux direction schedule (RCF); and (2) a more environmentally relevant variable magnitude, reversing flux direction schedule (RVF). Wherein, flux magnitude was ramped up and down according to a sine wave. Modeled breakthrough curves of chloride yielded nearly identical dispersivities under both flow regimes. For the RVF experiment, Peclet numbers captured the transition between diffusion and dispersion dominated transport in the intertidal interval. Therefore, the apparatus accurately simulated conservative, environmentally relevant mixing under transient, variable flux flow regimes. Accurately generating variable flux reversing flow regimes is important to simulate the interaction between flow velocity and chemical reactions where Brownian diffusion of solutes to solid-phase reaction sites is kinetically limited.

2.
Ground Water ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507835

RESUMEN

Hydraulic fracturing (HF) events consume high volumes of water over a short time. When groundwater is the source, the additional pumping by rig/frack supply wells (RFSWs) may impose costs on owners of other sector wells (OSWs) by lowering the hydraulic head. The Carrizo-Wilcox aquifer in south Texas is the main source of water for HF of the Eagle Ford Shale (EFS) Play. The objectives are to assess the impacts of groundwater pumping for HF supply on: (1) hydraulic heads in OSWs located nearby an RFSW and (2) volumetric fluxes between layers of the regional aquifer system compared to a baseline model without the effect of RFSW pumping. The study area spans the footprint of the EFS Play in Texas and extends from 2011 to 2020. The pumping schedules of 2500 RFSWs were estimated from reported pumped water volumes to supply 22,500 HF events. Median annual drawdowns in OSWs ranged from 0.2 to 6.6 m, whereas 95th percentile annual drawdowns exceeded 20 m. The magnitudes of drawdown increased from 2011 to 2020. Of the four layers that comprise the Carrizo-Wilcox aquifer, the upper Wilcox was the most intensively pumped for HF supply. During the peak HF year of 2014, the net flux to the upper Wilcox was 292 Mm3 compared to the baseline net flux for the same year of 278 Mm3 -a relative gain of 14 Mm3 . Pumping for HF supply has the potential to negatively impact nearby OSWs by capturing water from adjacent aquifer layers.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37048011

RESUMEN

Arsenic and atrazine are two water contaminants of high public health concern in Iowa. The occurrence of arsenic and atrazine in drinking water from Iowa's private wells and public water systems was investigated over several decades. In this study, the percentages of detection and violation of regulations were compared over region, season, and water source, and factors affecting the detection and concentration of arsenic and atrazine were analyzed using a mixed-effects model. Atrazine contamination in drinking water was found to vary by region, depending on agricultural usage patterns and hydrogeological features. The annual median atrazine levels of all public water systems were below the drinking water standard of 3 ppb in 2001-2014. Around 40% of public water systems contained arsenic at levels > 1 ppb in 2014, with 13.8% containing arsenic at levels of 5-10 ppb and 2.6% exceeding 10 ppb. This unexpected result highlights the ongoing public health threat posed by arsenic in drinking water in Iowa, emphasizing the need for continued monitoring and mitigation efforts to reduce exposure and associated health risks. Additionally, an atrazine metabolite, desethylatrazine, should be monitored to obtain a complete account of atrazine exposure and possible health effects.


Asunto(s)
Arsénico , Atrazina , Agua Potable , Contaminantes Químicos del Agua , Atrazina/análisis , Agua Potable/análisis , Arsénico/análisis , Iowa/epidemiología , Salud Pública , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
4.
Sci Total Environ ; 857(Pt 1): 159347, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36228788

RESUMEN

Nearly half of the world's urban population depends on aquifers for drinking water. These are increasingly vulnerable to pollution and overexploitation. Besides anthropogenic sources, pollutants such as arsenic (As) are also geogenic and their concentrations have, in some cases, been increased by groundwater pumping. Almost 40 % of Mexico's population relies on groundwater for drinking water purposes; much the aquifers in semi-arid and arid central and northern Mexico is contaminated by As. These are agricultural regions where irrigation water is primarily provided from intenstive pumping of the aquifers leading to long-standing declines in the water table. The focus of this study is the main aquifer within the Comarca Lagunera region in Northern Mexico. Although the scientific evidence demonstrates that health effects are associated with long-term exposure to elevated As concentrations, this knowledge has not yielded effective groundwater development and public health policy. A multidisciplinary approach - including the evaluation of geochemistry, human health risk and development and public health policy - was used to provide a current account of these links. The dissolved As concentrations measured exceeded the corresponding World Health Organization guideline for drinking water in 90 % of the sampled wells; for the population drinking this water, the estimated probability of presenting non-carcinogenic health effects was >90 %, and the lifetime risk of developing cancer ranged from 0.5 to 61 cases in 10,000 children and 0.2 to 33 cases in 10,000 adults. The results suggest that insufficient policy responses are due to a complex and dysfunctional groundwater governance framework that compromises the economic, social and environmental sustainability of this region. These findings may valuable to other regions with similar settings that need to design and enact better informed, science-based policies that recognize the value of a more sustainable use of groundwater resources and a healthier population.


Asunto(s)
Arsénico , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Humanos , Arsénico/análisis , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , México , Política de Salud
5.
Chemosphere ; 308(Pt 2): 136289, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36058378

RESUMEN

Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Bangladesh , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua Subterránea/química , Hierro/análisis , Compuestos Orgánicos , Ríos , Arena , Agua , Contaminantes Químicos del Agua/análisis
6.
J Contam Hydrol ; 251: 104068, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108569

RESUMEN

Shallow (<30 m) reducing groundwater commonly contains abundant dissolved arsenic (As) in Bangladesh. We hypothesize that dissolved As in iron (Fe)-rich groundwater discharging to rivers is trapped onto Fe(III)-oxyhydroxides which precipitate in shallow riverbank sediments under the influence of tidal fluctuations. Therefore, the goal of this study is to compare the calculated mass of sediment-bound As that would be sequestered from dissolved groundwater As that discharges through riverbanks of the Meghna River to the observed mass of As trapped within riverbank sediments. To calculate groundwater discharge, a Boussinesq aquifer analytical groundwater flow model was developed and constrained by cyclical seasonal fluctuations in hydraulic heads and river stages observed at three sites along a 13 km reach in central Bangladesh. At all sites, groundwater discharges to the river year-round but most of it passes through an intertidal zone created by ocean tides propagating upstream from the Bay of Bengal in the dry season. The annualized groundwater discharge per unit width at the three sites ranges from 173 to 891 m2/yr (average 540 m2/yr). Assuming that riverbanks have been stable since the Brahmaputra River avulsed far away from this area 200 years ago and dissolved As is completely trapped within riverbank sediments, the mass of accumulated sediment As can be calculated by multiplying groundwater discharge by ambient aquifer As concentrations measured in 1969 wells. Across all sites, the range of calculated sediment As concentrations in the riverbank is 78-849 mg/kg, which is higher than the observed concentrations (17-599 mg/kg). This discovery supports the hypothesis that the dissolved As in groundwater discharge to the river is sufficient to account for the observed buried deposits of As along riverbanks.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Ríos , Sedimentos Geológicos , Compuestos Férricos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
7.
Artículo en Inglés | MEDLINE | ID: mdl-36011539

RESUMEN

Semi-arid regions with little surface water commonly experience rapid water table decline rates. To hedge against the falling water table, production wells in central Mexico are commonly installed to depths of several hundred meters below the present water table and constructed as open boreholes or perforated casings across their entire length. Such wells represent highly conductive pathways leading to non-negligible flow across chemically distinct layers of an aquifer-a phenomenon known as ambient flow. The objectives of this study were to estimate the rate of ambient flow in seven production wells utilizing an end-member mixing model that is constrained by the observed transient chemical composition of produced water. The end-member chemical composition of the upper and lower layers of an urban aquifer that overlies geothermal heat is estimated to anticipate the future quality of this sole source of water for a rapidly growing urban area. The comprehensive water chemistry produced by seven continuously perforated municipal production wells, spanning three geologically unique zones across the city of San Miguel de Allende in Guanajuato State, was monitored during one day of pumping. The concentration of conservative constituents gradually converged on steady-state values. The model indicates that, relative to the lower aquifer, the upper aquifer generally has higher specific conductance (SC), chloride (Cl), nitrate (NO3), calcium (Ca), barium (Ba) and magnesium (Mg). The lower aquifer generally has a higher temperature, sodium (Na), boron (B), arsenic (As) and radon (Rn). Ambient flow ranged from 33.1 L/min to 225.7 L/min across the seven wells, but this rate for a given well varied depending on which tracer was used. This new 3D understanding of the chemical stratification of the aquifer suggests that as water tables continue to fall, concentrations of geothermally associated contaminants of concern will increase in the near future, potentially jeopardizing the safety of municipal drinking water.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , Agua Subterránea/química , Nitratos/análisis , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Pozos de Agua
8.
Water Res ; 185: 116257, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086466

RESUMEN

This study identifies causes of rising arsenic (As) concentrations over 17 years in an inter-montane aquifer system located just north of the Trans-Mexican-Volcanic-Belt in the Mesa central physiographic region that is extensively developed by long-screened production wells. Arsenic concentrations increased by more than 10 µg/L in 14% (3/22) of re-sampled wells. Similarly, in a larger scale analysis wherein As concentrations measured in 137 wells in 2016 were compared to interpolated, baseline concentrations from 246 wells in 1999, As concentrations rose more than 10 µg/L in 30% of wells. Between 1999 and 2016, the percentage of all wells sampled in each basin-wide sampling campaign exceeding the World Health Organization's 10 µg/L drinking water limit increased from 38 to 64%. Principal Components Analysis (PCA), step-wise multiple regression, and Random Forest modeling (RF) revealed that high As concentrations are closely associated with high pH and temperature, and high concentrations of fluoride (F), molybdenum (Mo), lithium (Li), sodium (Na) and silica (Si), but low calcium (Ca) and nitrate (NO3) concentrations. Pumping-induced mixing with hot, geothermally impacted groundwater generates alkaline water through hydrolysis of silicate minerals. The rising pH converts oxyanion sorption sites from positive to negative releasing As (and Mo) to pore waters. The negative correlation between nitrate and As concentrations can be explained by conservative mixing of shallow, young groundwater with geothermally influenced groundwater. Therefore water carrying an anthropogenic contaminant dilutes water carrying geogenic contaminants. This process is enabled by long well screens. Over-exploitation of aquifers in geothermal regions for agriculture can drive As concentrations in water from production wells to toxic levels even as the total dissolved solids remain low.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Arsénico/análisis , Monitoreo del Ambiente , México , Contaminantes Químicos del Agua/análisis
9.
Water Res ; 182: 115962, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32629319

RESUMEN

Over the past decades, groundwater quality has deteriorated worldwide by nitrate pollution due to the intensive use of fertilizers in agriculture, release of untreated urban sewage and industrial wastewater, and atmospheric deposition. Likewise, groundwater is increasingly polluted by sulfate due to the release of domestic, municipal and industrial wastewaters, as well as through geothermal processes, seawater intrusion, atmospheric deposition, mineral dissolution, and acid rain. The urbanized and industrialized Monterrey valley has a long record of elevated nitrate and sulfate concentrations in groundwater with multiple potential pollution sources. This study aimed to track different sources and transformation processes of nitrate and sulfate pollution in Monterrey using a suite of chemical and isotopic tracers (δ2H-H2O, δ18O-H2O, δ15N-NO3, δ18O-NO3 δ34S-SO4, δ18O-SO4) combined with a probability isotope mixing model. Soil nitrogen and sewage were found to be the most important nitrate sources, while atmospheric deposition, marine evaporites and sewage were the most prominent sulfate sources. However, the concentrations of nitrate and sulfate were controlled by denitrification and sulfate reduction processes in the transition and discharge zones. The approach followed in this study is useful for establishing effective pollution management strategies in contaminated aquifers.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua/análisis , Teorema de Bayes , China , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Sulfatos
10.
Nat Commun ; 11(1): 2244, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32382006

RESUMEN

Confining clay layers typically protect groundwater aquifers against downward intrusion of contaminants. In the context of groundwater arsenic in Bangladesh, we challenge this notion here by showing that organic carbon drawn from a clay layer into a low-arsenic pre-Holocene (>12 kyr-old) aquifer promotes the reductive dissolution of iron oxides and the release of arsenic. The finding explains a steady rise in arsenic concentrations in a pre-Holocene aquifer below such a clay layer and the repeated failure of a structurally sound community well. Tritium measurements indicate that groundwater from the affected depth interval (40-50 m) was recharged >60 years ago. Deeper (55-65 m) groundwater in the same pre-Holocene aquifer was recharged only 10-50 years ago but is still low in arsenic. Proximity to a confining clay layer that expels organic carbon as an indirect response to groundwater pumping, rather than directly accelerated recharge, caused arsenic contamination of this pre-Holocene aquifer.


Asunto(s)
Arsénico/análisis , Arcilla/química , Bangladesh , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
11.
Ground Water ; 57(4): 575-589, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30246345

RESUMEN

The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: "recharge," "transition," and "discharge." In the recharge zone the groundwater type is Ca-HCO3 -SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3 -SO4 -Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3 -SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Ríos
12.
Sci Total Environ ; 622-623: 1029-1045, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890573

RESUMEN

Fluoride (F), naturally found in aquifers around the world at toxic concentrations, causes disease in millions of people. The long-term stability, however, of those concentrations within intensively pumped aquifers is poorly characterized. We assessed long-term stability in the spatial distribution of F concentrations in an intensively pumped aquifer within the semi-arid, inter-montane Independence Basin in central Mexico between 1999 and 2016. Although stable in 16 re-sampled wells, F concentrations increased in some localities across the basin by as much as 4mg/L. Changes in recharge pathways to the deep aquifer were identified by analyzing changes in δ2H, δ18O and Cl/Br mass ratios. In 1999, δ2H and δ18O values suggested the aquifer was recharged in the mountains. In 2016, however, substantial increases in δ18O values in the center of the basin suggest recharge water is derived from rainfall that had experienced increased evaporation. In 1999, the mass ratio Cl/Br in groundwater was slightly enriched over local rainfall, and followed a single mixing line on a plot of Cl. vs. Cl/Br. In 2016, however, three distinct groupings of wells were evident, all following different mixing lines. These changes suggest input from new sources including urban sewage, evaporate dissolution, connate sea water and geothermal waters. Step-wise multiple regression was used to quantify the impact of physical and chemical parameters on F concentrations. In 1999, Li (6.8±1.7) and Na (0.01±0.004) drove F concentrations (R2=0.54). In 2016, Na (0.013±0.0018), HCO3 (0.004±0.001), Ca (-0.0018±0.00045), and Mg (-0.055±0.023) drove F concentrations (0.78). Irrigation pumping and urban expansion within semi-arid, groundwater-dependent, inter-montane basins drive mixing of disparate groundwater chemistries and introduces new sources of recharge to aquifers inducing changes in aquifer chemistry including increasing concentrations of geogenic toxic elements.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Fluoruros/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , México
13.
J Contam Hydrol ; 207: 17-30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29128133

RESUMEN

Microbial communities are the driving force behind the degradation of contaminants like aromatic hydrocarbons in groundwater ecosystems. However, little is known about the response of native microbial communities to contamination in pristine environments as well as their potential to recover from a contamination event. Here, we used an indoor aquifer mesocosm filled with sandy quaternary calciferous sediment that was continuously fed with pristine groundwater to study the response, resistance and resilience of microbial communities to toluene contamination over a period of almost two years, comprising 132days of toluene exposure followed by nearly 600days of recovery. We observed an unexpectedly high intrinsic potential for toluene degradation, starting within the first two weeks after the first exposure. The contamination led to a shift from oxic to anoxic, primarily nitrate-reducing conditions as well as marked cell growth inside the contaminant plume. Depth-resolved community fingerprinting revealed a low resistance of the native microbial community to the perturbation induced by the exposure to toluene. Distinct populations that were dominated by a small number of operational taxonomic units (OTUs) rapidly emerged inside the plume and at the plume fringes, partially replacing the original community. During the recovery period physico-chemical conditions were restored to the pristine state within about 35days, whereas the recovery of the biological parameters was much slower and the community composition inside the former plume area had not recovered to the original state by the end of the experiment. These results demonstrate the low resilience of sediment-associated groundwater microbial communities to organic pollution and underline that recovery of groundwater ecosystems cannot be assessed solely by physico-chemical parameters.


Asunto(s)
Agua Subterránea/microbiología , Tolueno/toxicidad , Contaminantes Químicos del Agua/toxicidad , Biodegradación Ambiental , Ecosistema , Ecotoxicología/métodos , Agua Subterránea/química , Microbiota/efectos de los fármacos , Nitratos/metabolismo , Tolueno/análisis , Contaminantes Químicos del Agua/análisis
14.
Ground Water ; 55(4): 519-531, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28273686

RESUMEN

Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (DPT ); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob-Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m2 /d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m2 /d and 1 to 5 × 10-4 , respectively with DPT ranging from 9 to 40 × 105 m2 /d. In contrast, D estimated from the Jacob-Ferris model ranged from 0.5 to 9 × 104 m2 /d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob-Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob-Ferris model. Moderately confined (Ktop /Kaquifer < 0.01) or anisotropic aquifers (Kx /Kz > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob-Ferris model at our site argues for little confinement or anisotropy.


Asunto(s)
Agua Subterránea , Modelos Teóricos , Anisotropía , Bangladesh , Ríos , Movimientos del Agua
15.
Nat Commun ; 7: 12833, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27673729

RESUMEN

Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

16.
Genome Announc ; 2(6)2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25414497

RESUMEN

The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport.

17.
J Water Health ; 10(4): 565-78, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23165714

RESUMEN

Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, six unsealed) were monitored for culturable Escherichia coli over 18 months. Additionally, two 'snapshot' sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (enterotoxigenic E. coli; ETEC), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using quantitative polymerase chain reaction (qPCR). No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained culturable E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p < 0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality.


Asunto(s)
Monitoreo del Ambiente/métodos , Heces/microbiología , Pozos de Agua/microbiología , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Proteínas Bacterianas/genética , Bangladesh , Proteínas de la Cápside/genética , Agua Potable/microbiología , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/aislamiento & purificación , Proteínas de Escherichia coli/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Shigella/genética , Shigella/aislamiento & purificación , Calidad del Agua
18.
Sci Total Environ ; 431: 314-22, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22705866

RESUMEN

Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary.


Asunto(s)
Heces/microbiología , Agua Subterránea/microbiología , Rotavirus/patogenicidad , Bacteroides/patogenicidad , Bangladesh , Colifagos/patogenicidad , Agua Potable/microbiología , Enterobacteriaceae/patogenicidad , Escherichia coli/genética , Escherichia coli/patogenicidad , Heces/virología , Agua Subterránea/virología , Humanos , Shigella/patogenicidad , Vibrio/patogenicidad , Microbiología del Agua
19.
Environ Sci Technol ; 46(3): 1361-70, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22191430

RESUMEN

Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5 to 1.3 log(10)/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence the how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater.


Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Escherichia coli/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Cuartos de Baño , Abastecimiento de Agua , Pozos de Agua/microbiología , Bangladesh , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Tamaño de la Partícula
20.
Sci Total Environ ; 409(17): 3174-82, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632095

RESUMEN

A majority of households in Bangladesh rely on pond water for hygiene. Exposure to pond water fecal contamination could therefore still contribute to diarrheal disease despite the installation of numerous tubewells for drinking. The objectives of this study are to determine the predominant sources (human or livestock) of fecal pollution in ponds and examine the association between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were analyzed for E. coli using culture-based methods and E. coli, Bacteroidales and adenovirus using quantitative PCR. Population and sanitation spatial data were collected and measured against pond fecal contamination. Humans were the dominant source of fecal contamination in 79% of the ponds according to Bacteroidales measurements. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria (up to 106 Most Probable Number (MPN) of culturable E. coli per 100 mL). Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.05) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines (visible effluent or open pits) within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). Water in the vast majority of the surveyed ponds contained unsafe levels of fecal contamination attributable primarily to unsanitary latrines, and to lesser extent, to sanitary latrines and cattle. Since the majority of fecal pollution is derived from human waste, continued use of pond water could help explain the persistence of diarrheal disease in rural South Asia.


Asunto(s)
Heces , Agua Dulce/química , Aguas del Alcantarillado/análisis , Contaminantes del Agua/análisis , Abastecimiento de Agua/análisis , Adenoviridae/crecimiento & desarrollo , Adenoviridae/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Bangladesh , Monitoreo del Ambiente , Agua Dulce/microbiología , Agua Dulce/virología , Humanos , Medición de Riesgo , Población Rural , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/virología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...