Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diabetes ; 67(7): 1369-1379, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29643061

RESUMEN

Type 2 diabetes is associated with impaired exercise capacity. Alterations in both muscle perfusion and mitochondrial function can contribute to exercise impairment. We hypothesized that impaired muscle mitochondrial function in type 2 diabetes is mediated, in part, by decreased tissue oxygen delivery and would improve with oxygen supplementation. Ex vivo muscle mitochondrial content and respiration assessed from biopsy samples demonstrated expected differences in obese individuals with (n = 18) and without (n = 17) diabetes. Similarly, in vivo mitochondrial oxidative phosphorylation capacity measured in the gastrocnemius muscle via 31P-MRS indicated an impairment in the rate of ADP depletion with rest (27 ± 6 s [diabetes], 21 ± 7 s [control subjects]; P = 0.008) and oxidative phosphorylation (P = 0.046) in type 2 diabetes after isometric calf exercise compared with control subjects. Importantly, the in vivo impairment in oxidative capacity resolved with oxygen supplementation in adults with diabetes (ADP depletion rate 5.0 s faster, P = 0.012; oxidative phosphorylation 0.046 ± 0.079 mmol/L/s faster, P = 0.027). Multiple in vivo mitochondrial measures related to HbA1c These data suggest that oxygen availability is rate limiting for in vivo mitochondrial oxidative exercise recovery measured with 31P-MRS in individuals with uncomplicated diabetes. Targeting muscle oxygenation could improve exercise function in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Obesidad/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/administración & dosificación , Adulto , Anciano , Respiración de la Célula/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Ejercicio Físico/fisiología , Terapia por Ejercicio/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/complicaciones , Obesidad/terapia , Oxígeno/farmacología , Consumo de Oxígeno/fisiología , Conducta Sedentaria
2.
J Cardiovasc Pharmacol ; 65(2): 137-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25264749

RESUMEN

Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.


Asunto(s)
Adamantano/análogos & derivados , Diabetes Mellitus Tipo 2 , Dipéptidos/farmacología , Mitocondrias Musculares , Actividad Motora , Óxido Nítrico Sintasa de Tipo III/metabolismo , Adamantano/farmacología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología , Proteínas Mitocondriales/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Músculo Liso Vascular/metabolismo , Biogénesis de Organelos , Condicionamiento Físico Animal/fisiología , Ratas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA