Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atmos Chem Phys ; 21(14): 11133-11160, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35949546

RESUMEN

Nitrogen oxides (NO x =NO+NO2) play a crucial role in the formation of ozone and secondary inorganic and organic aerosols, thus affecting human health, global radiation budget, and climate. The diurnal and spatial variations in NO2 are functions of emissions, advection, deposition, vertical mixing, and chemistry. Their observations, therefore, provide useful constraints in our understanding of these factors. We employ a Regional chEmical and trAnsport model (REAM) to analyze the observed temporal (diurnal cycles) and spatial distributions of NO2 concentrations and tropospheric vertical column densities (TVCDs) using aircraft in situ measurements and surface EPA Air Quality System (AQS) observations as well as the measurements of TVCDs by satellite instruments (OMI: the Ozone Monitoring Instrument; GOME-2A: Global Ozone Monitoring Experiment - 2A), ground-based Pandora, and the Airborne Compact Atmospheric Mapper (ACAM) instrument in July 2011 during the DISCOVER-AQ campaign over the Baltimore-Washington region. The model simulations at 36 and 4 km resolutions are in reasonably good agreement with the regional mean temporospatial NO2 observations in the daytime. However, we find significant overestimations (underestimations) of model-simulated NO2 (O3) surface concentrations during night-time, which can be mitigated by enhancing nocturnal vertical mixing in the model. Another discrepancy is that Pandora-measured NO2 TVCDs show much less variation in the late afternoon than simulated in the model. The higher-resolution 4 km simulations tend to show larger biases compared to the observations due largely to the larger spatial variations in NO x emissions in the model when the model spatial resolution is increased from 36 to 4 km. OMI, GOME-2A, and the high-resolution aircraft ACAM observations show a more dispersed distribution of NO2 vertical column densities (VCDs) and lower VCDs in urban regions than corresponding 36 and 4 km model simulations, likely reflecting the spatial distribution bias of NO x emissions in the National Emissions Inventory (NEI) 2011.

2.
J Atmos Ocean Technol ; 37(10): 1847-1864, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-33424106

RESUMEN

A unique automated planetary boundary layer (PBL) retrieval algorithm is proposed as a common cross-platform method for use with commercially available ceilometers for implementation under the redesigned U.S. Environmental Protection Agency Photochemical Assessment Monitoring Stations program. This algorithm addresses instrument signal quality and screens for precipitation and cloud layers before the implementation of the retrieval methodology using the Haar wavelet covariance transform method. Layer attribution for the PBL height is supported with the use of continuation and time-tracking parameters, and uncertainties are calculated for individual PBL height retrievals. Commercial ceilometer retrievals are tested against radiosonde PBL height and cloud-base height during morning and late afternoon transition times, critical to air quality model prediction and when retrieval algorithms struggle to identify PBL heights. A total of 58 radiosonde profiles were used and retrievals for nocturnal stable layers, residual layers and mixing layers were assessed. Overall good agreement was found for all comparisons with one system showing limitations for the cases of nighttime surface stable layers and daytime mixing layer. It is recommended that nighttime shallow stable layer retrievals be performed with a recommended minimum height or with additional verification. Retrievals of residual layer heights and mixing layer comparisons revealed overall good correlations to radiosonde heights (correlation coefficients, r2, ranging from 0.89 - 0.96 and bias ranging from ~ -131 to +63 m, and r2 from 0.88 - 0.97 and bias from -119 to +101 m, respectively).

3.
Atmos Chem Phys ; 19(7): 5051-5067, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534447

RESUMEN

During the May-June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), light synoptic meteorological forcing facilitated Seoul metropolitan pollution outflow to reach the remote Taehwa Research Forest (TRF) site and cause regulatory exceedances of ozone on 24 days. Two of these severe pollution events are thoroughly examined. The first, occurring on 17 May 2016, tracks transboundary pollution transport exiting eastern China and the Yellow Sea, traversing the Seoul Metropolitan Area (SMA), and then reaching TRF in the afternoon hours with severely polluted conditions. This case study indicates that although outflow from China and the Yellow Sea were elevated with respect to chemically unperturbed conditions, the regulatory exceedance at TRF was directly linked in time, space, and altitude to urban Seoul emissions. The second case studied, occurring on 09 June 2016, reveals that increased levels of biogenic emissions, in combination with amplified urban emissions, were associated with severe levels of pollutions and a regulatory exceedance at TRF. In summary, domestic emissions may be causing more pollution than by trans-boundary pathways, which have been historically believed to be the major source of air pollution in South Korea. The case studies are assessed with multiple aircraft, model (photochemical and meteorological) simulations, in-situ chemical sampling, and extensive ground-based profiling at TRF. These observations clearly identify TRF and the surrounding rural communities as receptor sites for severe pollution events associated with Seoul outflow, which will result in long-term negative effects to both human health and agriculture in the affected areas.

4.
Bull Am Meteorol Soc ; 100(2): 291-306, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33005058

RESUMEN

Coastal regions have historically represented a significant challenge for air quality investigations due to water-land boundary transition characteristics and a paucity of measurements available over water. Prior studies have identified the formation of high levels of ozone over water bodies, such as the Chesapeake Bay, that can potentially recirculate back over land to significantly impact populated areas. Earth-observing satellites and forecast models face challenges in capturing the coastal transition zone where small-scale meteorological dynamics are complex and large changes in pollutants can occur on very short spatial and temporal scales. An observation strategy is presented to synchronously measure pollutants 'over-land' and 'over-water' to provide a more complete picture of chemical gradients across coastal boundaries for both the needs of state and local environmental management and new remote sensing platforms. Intensive vertical profile information from ozone lidar systems and ozonesondes, obtained at two main sites, one over land and the other over water, are complemented by remote sensing and in-situ observations of air quality from ground-based, airborne (both personned and unpersonned), and shipborne platforms. These observations, coupled with reliable chemical transport simulations, such as the NOAA National Air Quality Forecast Capability (NAQFC), are expected to lead to a more fully characterized and complete land-water interaction observing system that can be used to assess future geostationary air quality instruments, such as the NASA Tropospheric Emissions: Monitoring of Pollution (TEMPO) as well as current low earth orbiting satellites, such as the European Space Agency's Sentinel 5-Precursor (S5-P) with its Tropospheric Monitoring Instrument (TROPOMI).

5.
Atmos Chem Phys ; 11: 4943-4961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33424951

RESUMEN

The Korea-United States Air Quality Study (KORUS-AQ) conducted during May-June 2016 offered the first opportunity to evaluate direct-sun observations of formaldehyde (HCHO) total column densities with improved Pandora spectrometer instruments. The measurements highlighted in this work were conducted both in the Seoul megacity area at the Olympic Park site (37.5232° N, 27.1260° E; 26 ma.s.l.) and at a nearby rural site downwind of the city at the Mount Taehwa research forest site (37.3123° N, 127.3106° E; 160ma.s.l.). Evaluation of these measurements was made possible by concurrent ground-based in situ observations of HCHO at both sites as well as overflight by the NASA DC-8 research aircraft. The flights provided in situ measurements of HCHO to characterize its vertical distribution in the lower troposphere (0-5km). Diurnal variation in HCHO total column densities followed the same pattern at both sites, with the minimum daily values typically observed between 6:00 and 7:00 local time, gradually increasing to a maximum between 13:00 and 17:00 before decreasing into the evening. Pandora vertical column densities were compared with those derived from the DC-8 HCHO in situ measured profiles augmented with in situ surface concentrations below the lowest altitude of the DC-8 in proximity to the ground sites. A comparison between 49 column densities measured by Pandora vs. aircraft-integrated in situ data showed that Pandora values were larger by 16% with a constant offset of 0.22DU (Dobson units; R 2 = 0.68). Pandora HCHO columns were also compared with columns calculated from the surface in situ measurements over Olympic Park by assuming a well-mixed lower atmosphere up to a ceilometer-measured mixed-layer height (MLH) and various assumptions about the small residual HCHO amounts in the free troposphere up to the tropopause. The best comparison (slope = 1.03±0.03; intercept = 0.29±0.02DU; and R 2 = 0.78±0.02) was achieved assuming equal mixing within ceilometer-measured MLH combined with an exponential profile shape. These results suggest that diurnal changes in HCHO surface concentrations can be reasonably estimated from the Pandora total column and information on the mixed-layer height. More work is needed to understand the bias in the intercept and the slope relative to columns derived from the in situ aircraft and surface measurements.

6.
Atmos Meas Tech ; 10: 3963-3983, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29682087

RESUMEN

Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

7.
J Geophys Res Atmos ; 121(18): 11104-11118, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-29082118

RESUMEN

Volcanic eruptions are important causes of natural variability in the climate system at all time scales. Assessments of the climate impact of volcanic eruptions by climate models almost universally assume that sulfate aerosol is the only radiatively active volcanic material. We report satellite observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite after the eruption of Mount Kelud (Indonesia) on 13 February 2014 of volcanic materials in the lower stratosphere. Using these observations along with in situ measurements with the Compact Optical Backscatter AerosoL Detector (COBALD) backscatter sondes and optical particle counters (OPCs) made during a balloon field campaign in northern Australia, we find that fine ash particles with a radius below 0.3 µm likely represented between 20 and 28% of the total volcanic cloud aerosol optical depth 3 months after the eruption. A separation of 1.5-2 km between the ash and sulfate plumes is observed in the CALIOP extinction profiles as well as in the aerosol number concentration measurements of the OPC after 3 months. The settling velocity of fine ash with a radius of 0.3 µm in the tropical lower stratosphere is reduced by 50% due to the upward motion of the Brewer-Dobson circulation resulting a doubling of its lifetime. Three months after the eruption, we find a mean tropical clear-sky radiative forcing at the top of the atmosphere from the Kelud plume near -0.08 W/m2 after including the presence of ash; a value ~20% higher than if sulfate alone is considered. Thus, surface cooling following volcanic eruptions could be affected by the persistence of ash and should be considered in climate simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA