Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101260, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38745895

RESUMEN

Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.

2.
Biotechnol Bioeng ; 120(8): 2269-2282, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386920

RESUMEN

Use of lentiviral vectors (LVs) in clinical Cell and Gene Therapy applications is growing. However, functional product loss during capture chromatography, typically anion-exchange (AIEX), remains a significant unresolved challenge for the design of economic processes. Despite AIEX's extensive use, variable performance and generally low recovery is reported. This poor understanding of product loss mechanisms highlights a significant gap in our knowledge of LV adsorption and other types of vector delivery systems. This work demonstrates HIV-1-LV recovery over quaternary-amine membrane adsorbents is a function of time in the adsorbed state. Kinetic data for product loss in the column bound state was generated. Fitting a second order-like rate model, we observed a rapid drop in functional recovery due to increased irreversible binding for vectors encoding two separate transgenes ( t Y 1 / 2 ${t}_{{Y}_{1/2}}$ = 12.7 and 18.7 min). Upon gradient elution, a two-peak elution profile implicating the presence of two distinct binding subpopulations is observed. Characterizing the loss kinetics of these two subpopulations showed a higher rate of vector loss in the weaker binding peak. This work highlights time spent in the adsorbed state as a critical factor impacting LV product loss and the need for consideration in LV AIEX process development workflows.


Asunto(s)
VIH-1 , Lentivirus , Lentivirus/genética , Cromatografía por Intercambio Iónico/métodos , Vectores Genéticos , VIH-1/genética , Transgenes , Transducción Genética
3.
Sci Rep ; 13(1): 834, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646795

RESUMEN

Process analytical technology (PAT) has demonstrated huge potential to enable the development of improved biopharmaceutical manufacturing processes by ensuring the reliable provision of quality products. However, the complexities associated with the manufacture of advanced therapy medicinal products have resulted in a slow adoption of PAT tools into industrial bioprocessing operations, particularly in the manufacture of cell and gene therapy products. Here we describe the applicability of a novel refractometry-based PAT system (Ranger system), which was used to monitor the metabolic activity of HEK293T cell cultures during lentiviral vector (LVV) production processes in real time. The PAT system was able to rapidly identify a relationship between bioreactor pH and culture metabolic activity and this was used to devise a pH operating strategy that resulted in a 1.8-fold increase in metabolic activity compared to an unoptimised bioprocess in a minimal number of bioreactor experiments; this was achieved using both pre-programmed and autonomous pH control strategies. The increased metabolic activity of the cultures, achieved via the implementation of the PAT technology, was not associated with increased LVV production. We employed a metabolic modelling strategy to elucidate the relationship between these bioprocess level events and HEK293T cell metabolism. The modelling showed that culturing of HEK293T cells in a low pH (pH 6.40) environment directly impacted the intracellular maintenance of pH and the intracellular availability of oxygen. We provide evidence that the elevated metabolic activity was a response to cope with the stress associated with low pH to maintain the favourable intracellular conditions, rather than being indicative of a superior active state of the HEK293T cell culture resulting in enhanced LVV production. Forecasting strategies were used to construct data models which identified that the novel PAT system not only had a direct relationship with process pH but also with oxygen availability; the interaction and interdependencies between these two parameters had a direct effect on the responses observed at the bioprocess level. We present data which indicate that process control and intervention using this novel refractometry-based PAT system has the potential to facilitate the fine tuning and rapid optimisation of the production environment and enable adaptive process control for enhanced process performance and robustness.


Asunto(s)
Reactores Biológicos , Proteínas , Humanos , Células HEK293 , Técnicas de Cultivo de Célula , Aprendizaje Automático
4.
Biotechnol Bioeng ; 119(1): 48-58, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34585736

RESUMEN

Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the "distributed manufacturing" approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Industria Farmacéutica/métodos , Desarrollo de Vacunas , Animales , Escherichia coli , Geografía , Células HEK293 , Humanos , Pan troglodytes , SARS-CoV-2 , Tecnología Farmacéutica , Vacunación/instrumentación
5.
Biotechnol Prog ; 26(3): 697-705, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20014099

RESUMEN

Locating optimal protein precipitation conditions for complex biological feed materials is problematic. This article describes the application of a series of high-throughput platforms for the rapid identification and selection of conditions for the precipitation of an IgG(4) monoclonal antibody (mAb) from a complex feedstock using only microliter quantities of material. The approach uses 96-microwell filter plates combined with high-throughput analytical methods and a method for well volume determination for product quantification. The low material, time and resource requirements facilitated the use of a full factorial Design of Experiments (DoE) for the rapid investigation into how critical parameters impact the IgG(4) precipitation. To aid the DoE, a set of preliminary range-finding studies were conducted first. Data collected through this approach describing Polyethylene Glycol (PEG) precipitation of the IgG(4) as a function of mAb concentration, precipitant concentration, and pH are presented. Response surface diagrams were used to explore interactions between parameters and to inform selection of the most favorable conditions for maximum yield and purification. PEG concentrations required for maximum yield and purity were dependant on the IgG(4) concentration; however, concentrations of 14 to 20% w/v, pH 6.5, gave optimal levels of yield and purity. Application of the high-throughput approach enabled 1,155 conditions to be examined with less than 1 g of material. The level of insights gained over such a short time frame is indicative of the power of microwell experimentation in allowing the rapid identification of appropriate processing conditions for key bioprocess operations.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunoglobulina G/inmunología , Polietilenglicoles/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Técnicas de Cultivo de Célula , Precipitación Química , Electroforesis en Gel de Poliacrilamida , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/química , Modelos Estadísticos , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...