Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(13): 3802-3805, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950272

RESUMEN

We present a high-power ridge waveguide distributed feedback (DFB) laser with a high-reflective coating and a phase shift section at the rear facet. The phase shift section is realized by means of a micro heater that is placed parallel to the ridge waveguide and the uniform grating. This type of heater section is easy to integrate into existing laser designs and allows adjusting and controlling the spectral behavior of the distributed feedback laser by shifting the rear facet phase condition, which makes it possible to overcome the challenges of mode-hop-free tuning of regular DFB lasers with highly reflective cleaved rear facet. Accordingly, we use the device to quantify rear facet phase conditions where mode hops occur, which are compared to theory with good agreement.

2.
Opt Lett ; 48(24): 6520-6523, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099788

RESUMEN

Distributed feedback (DFB) broad area (BA) lasers with multiple epitaxially stacked active regions and tunnel junctions designed for emission around 900 nm are investigated. DFB BA lasers with a cavity length of 1 mm and different stripe widths are compared in terms of their electro-optical performance and beam quality. The laser with a 200 µm stripe width achieved a high optical pulse power of 100 W in 10 ns long pulses at an injection current of 63 A, resulting in a brightness of 81 MW/cm2sr. The optical spectrum of both lasers is centered at around 886 nm, exhibiting a narrow spectral bandwidth of 0.2 nm (64 pm/K).

3.
Opt Express ; 30(23): 42394-42405, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366694

RESUMEN

External cavity mode-locked lasers could be used as comb sources for high volume application such as LIDAR and dual comb spectroscopy. Currently demonstrated chip scale integrated mode-locked lasers all operate in the C-band. In this paper, a hybrid-integrated external cavity mode-locked laser working at 1064 nm is demonstrated, a wavelength beneficial for optical coherence tomography or Raman spectroscopy applications. Additionally, optical injection locking is demonstrated, showing an improvement in the optical linewidth, and an increased stability of the comb spectrum.

4.
Appl Opt ; 61(18): 5419-5427, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36256109

RESUMEN

An experimental comparison between individual and common wavelength-operation of a Y-branch distributed Bragg reflector (DBR) ridge waveguide (RW) laser at 785 nm with an electrically adjustable spectral distance is presented. The dual-wavelength Y-branch laser combines two laser cavities via a Y-section to a common output section. DBR gratings with different grating periods are associated with the two cavities, which set the emission wavelengths of the two branches. Implemented resistive heater elements allow separate wavelength tuning of the two branches, which can be operated individually for alternating emission wavelengths in applications such as differential absorption spectroscopy or shifted excitation Raman difference spectroscopy. Common wavelength operation simultaneously generates two emission lines suitable for the generation of THz radiation using difference frequency mixing. Hereby, the devices could potentially be used as single-chip light sources for a combination of Raman and THz applications. For the wavelength-operation comparison presented, the devices were operated up to optical output powers of about 105 and 185 mW in individual and common wavelength-operation mode, respectively. In individual operation mode, the devices show spectral single-mode emission over the whole operation range. In common operation mode, the spectral emission is predominantly single mode up to an optical output power of 65 mW. In both operation modes, mode hops typical for DBR lasers occur. At an optical output power of 50 mW, tuning of the spectral distance between the two wavelengths using the implemented resistor heaters is demonstrated. In both modes of wavelength operation, a flexible frequency difference between 0 and 0.8 THz (0 and 1.6 nm) with predominantly single-mode spectral emission is obtained.

5.
Opt Express ; 29(16): 25133-25141, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614851

RESUMEN

A novel laser design is presented that combines a longitudinal-lateral gain-loss modulation with an additional phase tailoring achieved by etching rectangular trenches. At 100 A pulsed operation, simulations predict a far-field profile with 0.3° full width at half maximum (Θ F W H M =0.3 ∘ ) where a 0.4°-wide main lobe contains 40% of the emitted optical output power (Θ 40% =0.4 ∘ ). While far-field measurements of these structured lasers emitting 10 ns long pulses with 35 W peak power confirm a substantial enhancement of radiation within the central 1∘ angular range, the measured far-field intensity outside of the obtained central peak remains high.

6.
Opt Lett ; 45(17): 4827-4830, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870868

RESUMEN

In this Letter, we investigate the resolution of two-photon polymerization (2PP) with an amplified mode-locked external cavity diode laser with adjustable pulse length and a high repetition rate. The experimental results are analyzed with a newly developed 2PP model. Even with low pulse peak intensity, the produced structural dimensions are comparable to those generated by traditional 2PP laser sources. Thus, we show that a compact monolithic picosecond laser diode without amplification and with a repetition rate in the GHz regime can also be applied for 2PP. These results show the high application potential of compact mode-locked diode lasers for low-cost and compact 2PP systems.

7.
Opt Lett ; 42(8): 1524-1527, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409788

RESUMEN

We present a femtosecond laser diode system that is capable of autonomously adjusting itself to compensate for the external dispersion in an arbitrary application. The laser system contains a spatial light modulator inside the cavity which is controlled by an evolutionary algorithm in order to allow for phase and amplitude shaping of the laser emission. The cavity-internal dispersion control is shown to be much more efficient than an external control with a pulse shaper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA