Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Mol Cell Oncol ; 8(2): 1884034, 2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33855169

RESUMEN

~50% of colorectal cancers have an activating mutation in KRAS (encoding the KRAS proto-oncogene) and remain difficult to target in the clinic. We have recently shown that activation of KRAS protein alters the regulation of mRNA translation, increasing total protein synthesis, and maintaining elevated c-MYC (MYC proto-oncogene) expression. Targeting these pathways downstream of KRAS reveals a striking dependency that has potential for clinical translation.

4.
Nat Genet ; 53(1): 16-26, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414552

RESUMEN

Oncogenic KRAS mutations and inactivation of the APC tumor suppressor co-occur in colorectal cancer (CRC). Despite efforts to target mutant KRAS directly, most therapeutic approaches focus on downstream pathways, albeit with limited efficacy. Moreover, mutant KRAS alters the basal metabolism of cancer cells, increasing glutamine utilization to support proliferation. We show that concomitant mutation of Apc and Kras in the mouse intestinal epithelium profoundly rewires metabolism, increasing glutamine consumption. Furthermore, SLC7A5, a glutamine antiporter, is critical for colorectal tumorigenesis in models of both early- and late-stage metastatic disease. Mechanistically, SLC7A5 maintains intracellular amino acid levels following KRAS activation through transcriptional and metabolic reprogramming. This supports the increased demand for bulk protein synthesis that underpins the enhanced proliferation of KRAS-mutant cells. Moreover, targeting protein synthesis, via inhibition of the mTORC1 regulator, together with Slc7a5 deletion abrogates the growth of established Kras-mutant tumors. Together, these data suggest SLC7A5 as an attractive target for therapy-resistant KRAS-mutant CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Regiones no Traducidas 5'/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Carcinogénesis/patología , Proliferación Celular , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Estimación de Kaplan-Meier , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor/metabolismo , Metástasis de la Neoplasia , Oncogenes , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
5.
J Cell Sci ; 134(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441326

RESUMEN

Cell division, differentiation and function are largely dependent on accurate proteome composition and regulated gene expression. To control this, protein synthesis is an intricate process governed by upstream signalling pathways. Eukaryotic translation is a multistep process and can be separated into four distinct phases: initiation, elongation, termination and recycling of ribosomal subunits. Translation initiation, the focus of this article, is highly regulated to control the activity and/or function of eukaryotic initiation factors (eIFs) and permit recruitment of mRNAs to the ribosomes. In this Cell Science at a Glance and accompanying poster, we outline the mechanisms by which tumour cells alter the process of translation initiation and discuss how this benefits tumour formation, proliferation and metastasis.


Asunto(s)
Neoplasias , Ribosomas , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
6.
Cancer Discov ; 11(5): 1228-1247, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33328217

RESUMEN

KRAS-mutant colorectal cancers are resistant to therapeutics, presenting a significant problem for ∼40% of cases. Rapalogs, which inhibit mTORC1 and thus protein synthesis, are significantly less potent in KRAS-mutant colorectal cancer. Using Kras-mutant mouse models and mouse- and patient-derived organoids, we demonstrate that KRAS with G12D mutation fundamentally rewires translation to increase both bulk and mRNA-specific translation initiation. This occurs via the MNK/eIF4E pathway culminating in sustained expression of c-MYC. By genetic and small-molecule targeting of this pathway, we acutely sensitize KRASG12D models to rapamycin via suppression of c-MYC. We show that 45% of colorectal cancers have high signaling through mTORC1 and the MNKs, with this signature correlating with a 3.5-year shorter cancer-specific survival in a subset of patients. This work provides a c-MYC-dependent cotargeting strategy with remarkable potency in multiple Kras-mutant mouse models and metastatic human organoids and identifies a patient population that may benefit from its clinical application. SIGNIFICANCE: KRAS mutation and elevated c-MYC are widespread in many tumors but remain predominantly untargetable. We find that mutant KRAS modulates translation, culminating in increased expression of c-MYC. We describe an effective strategy targeting mTORC1 and MNK in KRAS-mutant mouse and human models, pathways that are also commonly co-upregulated in colorectal cancer.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Neoplasias Colorrectales/genética , Factor 4E Eucariótico de Iniciación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Inhibidores mTOR/farmacología , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Animales , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
7.
Dis Model Mech ; 13(3)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32298235

RESUMEN

Regulation of protein synthesis makes a major contribution to post-transcriptional control pathways. During disease, or under stress, cells initiate processes to reprogramme protein synthesis and thus orchestrate the appropriate cellular response. Recent data show that the elongation stage of protein synthesis is a key regulatory node for translational control in health and disease. There is a complex set of factors that individually affect the overall rate of elongation and, for the most part, these influence either transfer RNA (tRNA)- and eukaryotic elongation factor 1A (eEF1A)-dependent codon decoding, and/or elongation factor 2 (eEF2)-dependent ribosome translocation along the mRNA. Decoding speeds depend on the relative abundance of each tRNA, the cognate:near-cognate tRNA ratios and the degree of tRNA modification, whereas eEF2-dependent ribosome translocation is negatively regulated by phosphorylation on threonine-56 by eEF2 kinase. Additional factors that contribute to the control of the elongation rate include epigenetic modification of the mRNA, coding sequence variation and the expression of eIF5A, which stimulates peptide bond formation between proline residues. Importantly, dysregulation of elongation control is central to disease mechanisms in both tumorigenesis and neurodegeneration, making the individual key steps in this process attractive therapeutic targets. Here, we discuss the relative contribution of individual components of the translational apparatus (e.g. tRNAs, elongation factors and their modifiers) to the overall control of translation elongation and how their dysregulation contributes towards disease processes.


Asunto(s)
Enfermedad , Salud , Extensión de la Cadena Peptídica de Translación , Aminoacilación , Animales , Carcinogénesis/genética , Humanos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
8.
Cell Death Differ ; 26(12): 2535-2550, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30858608

RESUMEN

RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.


Asunto(s)
Factor 1 de Respuesta al Butirato/deficiencia , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Animales , Factor 1 de Respuesta al Butirato/biosíntesis , Factor 1 de Respuesta al Butirato/genética , Homeostasis , Humanos , Ratones , Factores Asociados con la Proteína de Unión a TATA/biosíntesis , Factores Asociados con la Proteína de Unión a TATA/genética
9.
Sci Signal ; 12(567)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723174

RESUMEN

Intratumoral hypoxia causes the formation of dysfunctional blood vessels, which contribute to tumor metastasis and reduce the efficacy of therapeutic treatments. Blood vessels are embedded in the tumor stroma of which cancer-associated fibroblasts (CAFs) constitute a prominent cellular component. We found that hypoxic human mammary CAFs promoted angiogenesis in CAF-endothelial cell cocultures in vitro. Mass spectrometry-based proteomic analysis of the CAF secretome unraveled that hypoxic CAFs contributed to blood vessel abnormalities by altering their secretion of various pro- and anti-angiogenic factors. Hypoxia induced pronounced remodeling of the CAF proteome, including proteins that have not been previously related to this process. Among those, the uncharacterized protein NCBP2-AS2 that we renamed HIAR (hypoxia-induced angiogenesis regulator) was the protein most increased in abundance in hypoxic CAFs. Silencing of HIAR abrogated the pro-angiogenic and pro-migratory function of hypoxic CAFs by decreasing secretion of the pro-angiogenic factor VEGFA and consequently reducing VEGF/VEGFR downstream signaling in the endothelial cells. Our study has identified a regulator of angiogenesis and provides a map of hypoxia-induced molecular alterations in mammary CAFs.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Hipoxia , Neovascularización Patológica/genética , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética
10.
Proc Natl Acad Sci U S A ; 115(24): 6219-6224, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844156

RESUMEN

TAp73 is a transcription factor that plays key roles in brain development, aging, and cancer. At the cellular level, TAp73 is a critical homeostasis-maintaining factor, particularly following oxidative stress. Although major studies focused on TAp73 transcriptional activities have indicated a contribution of TAp73 to cellular metabolism, the mechanisms underlying its role in redox homeostasis have not been completely elucidated. Here we show that TAp73 contributes to the oxidative stress response by participating in the control of protein synthesis. Regulation of mRNA translation occupies a central position in cellular homeostasis during the stress response, often by reducing global rates of protein synthesis and promoting translation of specific mRNAs. TAp73 depletion results in aberrant ribosomal RNA (rRNA) processing and impaired protein synthesis. In particular, polysomal profiles show that TAp73 promotes the integration of mRNAs that encode rRNA-processing factors in polysomes, supporting their translation. Concurrently, TAp73 depletion causes increased sensitivity to oxidative stress that correlates with reduced ATP levels, hyperactivation of AMPK, and translational defects. TAp73 is important for maintaining active translation of mitochondrial transcripts in response to oxidative stress, thus promoting mitochondrial activity. Our results indicate that TAp73 contributes to redox homeostasis by affecting the translational machinery, facilitating the translation of specific mitochondrial transcripts. This study identifies a mechanism by which TAp73 contributes to the oxidative stress response and describes a completely unexpected role for TAp73 in regulating protein synthesis.


Asunto(s)
Estrés Oxidativo/genética , Biosíntesis de Proteínas/genética , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Células A549 , Células HEK293 , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
12.
Curr Biol ; 27(5): 638-650, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28238655

RESUMEN

Cooling and hypothermia are profoundly neuroprotective, mediated, at least in part, by the cold shock protein, RBM3. However, the neuroprotective effector proteins induced by RBM3 and the mechanisms by which mRNAs encoding cold shock proteins escape cooling-induced translational repression are unknown. Here, we show that cooling induces reprogramming of the translatome, including the upregulation of a new cold shock protein, RTN3, a reticulon protein implicated in synapse formation. We report that this has two mechanistic components. Thus, RTN3 both evades cooling-induced translational elongation repression and is also bound by RBM3, which drives the increased expression of RTN3. In mice, knockdown of RTN3 expression eliminated cooling-induced neuroprotection. However, lentivirally mediated RTN3 overexpression prevented synaptic loss and cognitive deficits in a mouse model of neurodegeneration, downstream and independently of RBM3. We conclude that RTN3 expression is a mediator of RBM3-induced neuroprotection, controlled by novel mechanisms of escape from translational inhibition on cooling.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/genética , Respuesta al Choque por Frío/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Animales , Proteínas y Péptidos de Choque por Frío/metabolismo , Frío , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/metabolismo , Proteínas de Unión al ARN/metabolismo
13.
RNA ; 22(4): 623-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26857222

RESUMEN

The RNA exosome is essential for 3' processing of functional RNA species and degradation of aberrant RNAs in eukaryotic cells. Recent reports have defined the substrates of the exosome catalytic domains and solved the multimeric structure of the exosome complex. However, regulation of exosome activity remains poorly characterized, especially in response to physiological stress. Following the observation that cooling of mammalian cells results in a reduction in 40S:60S ribosomal subunit ratio, we uncover regulation of the nuclear exosome as a result of reduced temperature. Using human cells and an in vivo model system allowing whole-body cooling, we observe reduced EXOSC10 (hRrp6, Pm/Scl-100) expression in the cold. In parallel, both models of cooling increase global SUMOylation, leading to the identification of specific conjugation of SUMO1 to EXOSC10, a process that is increased by cooling. Furthermore, we define the major SUMOylation sites in EXOSC10 by mutagenesis and show that overexpression of SUMO1 alone is sufficient to suppress EXOSC10 abundance. Reducing EXOSC10 expression by RNAi in human cells correlates with the 3' preribosomal RNA processing defects seen in the cold as well as reducing the 40S:60S ratio, a previously uncharacterized consequence of EXOSC10 suppression. Together, this work illustrates that EXOSC10 can be modified by SUMOylation and identifies a physiological stress where this regulation is prevalent both in vitro and in vivo.


Asunto(s)
Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Secuencia de Aminoácidos , Animales , Respuesta al Choque por Frío , Represión Enzimática , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Ribosómico/metabolismo , Proteína SUMO-1/metabolismo , Sumoilación
14.
Genes Dev ; 29(18): 1891-6, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338418

RESUMEN

We show that a common polymorphic variant in the ERCC5 5' untranslated region (UTR) generates an upstream ORF (uORF) that affects both the background expression of this protein and its ability to be synthesized following exposure to agents that cause bulky adduct DNA damage. Individuals that harbor uORF1 have a marked resistance to platinum-based agents, illustrated by the significantly reduced progression-free survival of pediatric ependymoma patients treated with such compounds. Importantly, inhibition of DNA-PKcs restores sensitivity to platinum-based compounds by preventing uORF1-dependent ERCC5 expression. Our data support a model in which a heritable 5' noncoding mRNA element influences individuals' responses to platinum-based chemotherapy.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Ependimoma/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sistemas de Lectura Abierta/genética , Polimorfismo Genético/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Daño del ADN , Ependimoma/tratamiento farmacológico , Ependimoma/mortalidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HeLa , Humanos
15.
Biochem Soc Trans ; 43(3): 333-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26009172

RESUMEN

Controlled whole-body cooling has been used since the 1950s to protect the brain from injury where cerebral blood flow is reduced. Therapeutic hypothermia has been used successfully during heart surgery, following cardiac arrest and with varied success in other instances of reduced blood flow to the brain. However, why reduced temperature is beneficial is largely unknown. Here we review the use of therapeutic hypothermia with a view to understanding the underlying biology contributing to the phenomenon. Interestingly, the benefits of cooling have recently been extended to treatment of chronic neurodegenerative diseases in two mouse models. Concurrently studies have demonstrated the importance of the regulation of protein synthesis, translation, to the cooling response, which is also emerging as a targetable process in neurodegeneration. Through these studies the potential importance of the rewarming process following cooling is also beginning to emerge. Altogether, these lines of research present new opportunities to manipulate cooling pathways for therapeutic gain.


Asunto(s)
Lesiones Encefálicas/genética , Lesiones Encefálicas/terapia , Hipotermia Inducida/métodos , Biosíntesis de Proteínas , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiopatología , Lesiones Encefálicas/fisiopatología , Frío , Paro Cardíaco/fisiopatología , Humanos , Ratones , Cirugía Torácica/métodos
16.
Cell Cycle ; 14(3): 333-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659032

RESUMEN

The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase in eukaryotes, and essential for DNA replication. By applying serial extractions to mammalian cells synchronized by release from quiescence, we reveal dynamic changes to the sub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase, identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix. The data distinguish 3 states that correspond to loose association with chromatin prior to DNA replication, transient highly stable binding to the nuclear-matrix coincident with initiation, and a post-initiation phase when MCM2 remains tightly associated with chromatin but not the nuclear-matrix. The data suggests that functional MCM complex loading takes place at the nuclear-matrix.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Matriz Nuclear/metabolismo , Células 3T3 , Animales , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Desoxirribonucleasa I/metabolismo , Fase G1/efectos de los fármacos , Ratones , Matriz Nuclear/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Fase S/efectos de los fármacos , Succinimidas/farmacología
17.
Biochem J ; 465(2): 227-38, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25353634

RESUMEN

Cells respond to external stress conditions by controlling gene expression, a process which occurs rapidly via post-transcriptional regulation at the level of protein synthesis. Global control of translation is mediated by modification of translation factors to allow reprogramming of the translatome and synthesis of specific proteins that are required for stress protection or initiation of apoptosis. In the present study, we have investigated how global protein synthesis rates are regulated upon mild cooling. We demonstrate that although there are changes to the factors that control initiation, including phosphorylation of eukaryotic translation initiation factor 2 (eIF2) on the α-subunit, the reduction in the global translation rate is mediated by regulation of elongation via phosphorylation of eukaryotic elongation factor 2 (eEF2) by its specific kinase, eEF2K (eukaryotic elongation factor 2 kinase). The AMP/ATP ratio increases following cooling, consistent with a reduction in metabolic rates, giving rise to activation of AMPK (5'-AMP-activated protein kinase), which is upstream of eEF2K. However, our data show that the major trigger for activation of eEF2K upon mild cooling is the release of Ca2+ ions from the endoplasmic reticulum (ER) and, importantly, that it is possible to restore protein synthesis rates in cooled cells by inhibition of this pathway at multiple points. As cooling has both therapeutic and industrial applications, our data provide important new insights into how the cellular responses to this stress are regulated, opening up new possibilities to modulate these responses for medical or industrial use at physiological or cooler temperatures.


Asunto(s)
Respuesta al Choque por Frío/fisiología , Quinasa del Factor 2 de Elongación/metabolismo , Extensión de la Cadena Peptídica de Translación/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Quinasa del Factor 2 de Elongación/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Fosforilación/fisiología
18.
Biochem J ; 465(2): 213-25, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25329545

RESUMEN

One of the key cellular responses to stress is the attenuation of mRNA translation and protein synthesis via the phosphorylation of eIF2α (eukaryotic translation initiation factor 2α). This is mediated by four eIF2α kinases and it has been suggested that each kinase is specific to the cellular stress imposed. In the present study, we show that both PERK (PKR-like endoplasmic reticulum kinase/eIF2α kinase 3) and GCN2 (general control non-derepressible 2/eIF2α kinase 4) are required for the stress responses associated with conditions encountered by cells overexpressing secreted recombinant protein. Importantly, whereas GCN2 is the kinase that is activated following cold-shock/hypothermic culturing of mammalian cells, PERK and GCN2 have overlapping functions since knockdown of one of these at the mRNA level is compensated for by the cell by up-regulating levels of the other. The protein p58IPK {also known as DnaJ3C [DnaJ heat-shock protein (hsp) 40 homologue, subfamily C, member 3]} is known to inhibit the eIF2α kinases PKR (dsRNA-dependent protein kinase/eIF2α kinase 2) and PERK and hence prevent or delay eIF2α phosphorylation and consequent inhibition of translation. However, we show that p58IPK is a general inhibitor of the eIF2α kinases in that it also interacts with GCN2. Thus forced overexpression of cytoplasmic p58 delays eIF2α phosphorylation, suppresses GCN2 phosphorylation and prolongs protein synthesis under endoplasmic reticulum (ER), hypothermic and prolonged culture stress conditions. Taken together, our data suggest that there is considerable cross talk between the eIF2α kinases to ensure that protein synthesis is tightly regulated. Their activation is controlled by p58 and the expression levels and localization of this protein are crucial in the capacity the cells to respond to cellular stress via control of protein synthesis rates and subsequent folding in the ER.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/biosíntesis , Biosíntesis de Proteínas/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Citoplasma/genética , Citoplasma/metabolismo , Retículo Endoplásmico/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Humanos , Ratones , Ratones Noqueados , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
19.
Biochem J ; 458(2): 213-24, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24320561

RESUMEN

eIF3 (eukaryotic initiation factor 3) is the largest and most complex eukaryotic mRNA translation factor in terms of the number of protein components or subunits. In mammals, eIF3 is composed of 13 different polypeptide subunits, of which five, i.e. a, b, c, g and i, are conserved and essential in vivo from yeasts to mammals. In the present study, we show that the eukaryotic cytosolic chaperonin CCT [chaperonin containing TCP-1 (tailless complex polypeptide 1)] binds to newly synthesized eIF3b and promotes the correct folding of eIF3h and eIF3i. Interestingly, overexpression of these last two subunits is associated with enhanced translation of specific mRNAs over and above the general enhancement of global translation. In agreement with this, our data show that, as CCT is required for the correct folding of eIF3h and eIF3i subunits, it indirectly influences gene expression with eIF3i overexpression enhancing both cap- and IRES (internal ribosome entry segment)-dependent translation initiation, whereas eIF3h overexpression selectively increases IRES-dependent translation initiation. Importantly, these studies demonstrate the requirement of the chaperonin machinery for the correct folding of essential components of the translational machinery and provide further evidence of the close interplay between the cell environment, cell signalling, cell proliferation, the chaperone machinery and translational apparatus.


Asunto(s)
Chaperonina con TCP-1/fisiología , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/metabolismo , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Animales , Células CHO , Chaperonina con TCP-1/metabolismo , Cricetinae , Cricetulus , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Unión Proteica/fisiología
20.
Open Biol ; 3(11): 130130, 2013 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-24258275

RESUMEN

The NAD(+)-dependent deacetylase SIRT1 is involved in diverse cellular processes, and has also been linked with multiple disease states. Among these, SIRT1 expression negatively correlates with cancer survival in both laboratory and clinical studies. Active regulator of SIRT1 (AROS) was the first reported post-transcriptional regulator of SIRT1 activity, enhancing SIRT1-mediated deacetylation and downregulation of the SIRT1 target p53. However, little is known regarding the role of AROS in regulation of SIRT1 during disease. Here, we report the cellular and molecular effects of RNAi-mediated AROS suppression, comparing this with the role of SIRT1 in a panel of human cell lines of both cancerous and non-cancerous origins. Unexpectedly, AROS is found to vary in its modulation of p53 acetylation according to cell context. AROS suppresses p53 acetylation only following the application of cell damaging stress, whereas SIRT1 suppresses p53 under all conditions analysed. This supplements the original characterization of AROS but indicates that SIRT1 activity can persist following suppression of AROS. We also demonstrate that knockdown of AROS induces apoptosis in three cancer cell lines, independent of p53 activation. Importantly, AROS is not required for the viability of three non-cancer cell lines indicating a putative role for AROS in specifically promoting cancer cell survival.


Asunto(s)
Supervivencia Celular , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/fisiología , Interferencia de ARN , Sirtuina 1/fisiología , Factores de Transcripción/fisiología , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Células MCF-7 , Neoplasias/genética , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...