Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38442920

RESUMEN

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer PDTX models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using WES. PDTX 3-D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6 inhibitor. This combination was evaluated in PDTX 3-D spheroids and in vivo experiments with responses measured by tumor volumes, PSA and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, while tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in mCRPC patients whose tumor expresses wild type RB1.

2.
Mol Pharm ; 20(8): 4129-4137, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37409698

RESUMEN

Stearoyl CoA desaturase 1 (SCD1) is the rate-limiting enzyme for converting saturated fatty acids (SFAs) into monounsaturated fatty acids (MUFAs) and plays a key role in endogenous (de novo) fatty acid metabolism. Given that this pathway is broadly upregulated across many tumor types with an aggressive phenotype, SCD1 has emerged as a compelling target for cancer imaging and therapy. The ligand 2-(4-(2-chlorophenoxy)piperidine-1-carboxamido)-N-methylisonicotinamide (SSI-4) was identified as a potent and highly specific SCD1 inhibitor with a strong binding affinity for SCD1 at our laboratory. We herein report the radiosynthesis of [11C]SSI-4 and the preliminary biological evaluation including in vivo PET imaging of SCD1 in a human tumor xenograft model. Radiotracer [11C]SSI-4 was labeled at the carbamide position via the direct [11C]CO2 fixation on the Synthra MeIplus module in high molar activity and good radiochemical yield. In vitro cell uptake assays were performed with three hepatocellular carcinoma (HCC) cell lines and three renal cell carcinoma (RCC) cell lines. Additionally, in vivo small animal PET/CT imaging with [11C]SSI-4 and the biodistribution were carried out in a mouse model bearing HCC xenografts. Radiotracer [11C]SSI-4 afforded a 4.14 ± 0.44% (decay uncorrected, n = 10) radiochemical yield based on starting [11]CO2 radioactivity. The [11C]SSI-4 radiosynthesis time including HPLC purification and SPE formulation was 25 min from the end of bombardment to the end of synthesis (EOS). The radiochemical purity of [11C]SSI-4 was 98.45 ± 1.43% (n = 10) with a molar activity of 225.82 ± 33.54 GBq/µmol (6.10 ± 0.91 Ci/µmol) at the EOS. In vitro cell uptake study indicated all SSI-4 responsive HCC and RCC cell line uptakes demonstrate specific uptake and are blocked by standard compound SSI-4. Preliminary small animal PET/CT imaging study showed high specific uptake and block of [11C]SSI-4 uptake with co-injection of cold SSI-4 in high SCD1-expressing organs including lacrimal gland, brown fat, liver, and tumor. In summary, novel radiotracer [11C]SSI-4 was rapidly and automatedly radiosynthesized by direct [11C]CO2 fixation. Our preliminary biological evaluation results suggest [11C]SSI-4 could be a promising radiotracer for PET imaging of SCD1 overexpressing tumor tissues.


Asunto(s)
Carcinoma Hepatocelular , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Carcinoma Hepatocelular/patología , Distribución Tisular , Dióxido de Carbono , Neoplasias Hepáticas/patología , Tomografía de Emisión de Positrones/métodos
3.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107206

RESUMEN

TREM2 is exclusively expressed by microglia in the brain and is strongly linked to the risk for Alzheimer's disease (AD). As microglial responses modulated by TREM2 are central to AD pathogenesis, enhancing TREM2 signaling has been explored as an AD therapeutic strategy. However, the effective therapeutic window targeting TREM2 is unclear. Here, by using microglia-specific inducible mouse models overexpressing human wild-type TREM2 (TREM2-WT) or R47H risk variant (TREM2-R47H), we show that TREM2-WT expression reduces amyloid deposition and neuritic dystrophy only during the early amyloid seeding stage, whereas TREM2-R47H exacerbates amyloid burden during the middle amyloid rapid growth stage. Single-cell RNA sequencing reveals suppressed disease-associated microglia (DAM) signature and reduced DAM population upon TREM2-WT expression in the early stage, whereas upregulated antigen presentation pathway is detected with TREM2-R47H expression in the middle stage. Together, our findings highlight the dynamic effects of TREM2 in modulating AD pathogenesis and emphasize the beneficial effect of enhancing TREM2 function in the early stage of AD development.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Amiloidosis/patología , Animales , Encéfalo/patología , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
4.
Sci Transl Med ; 12(529)2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024798

RESUMEN

The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease mainly by driving amyloid-ß pathology. Recently, APOE4 has also been found to be a genetic risk factor for Lewy body dementia (LBD), which includes dementia with Lewy bodies and Parkinson's disease dementia. How APOE4 drives risk of LBD and whether it has a direct effect on α-synuclein pathology are not clear. Here, we generated a mouse model of synucleinopathy using an adeno-associated virus gene delivery of α-synuclein in human APOE-targeted replacement mice expressing APOE2, APOE3, or APOE4. We found that APOE4, but not APOE2 or APOE3, increased α-synuclein pathology, impaired behavioral performances, worsened neuronal and synaptic loss, and increased astrogliosis at 9 months of age. Transcriptomic profiling in APOE4-expressing α-synuclein mice highlighted altered lipid and energy metabolism and synapse-related pathways. We also observed an effect of APOE4 on α-synuclein pathology in human postmortem brains with LBD and minimal amyloid pathology. Our data demonstrate a pathogenic role of APOE4 in exacerbating α-synuclein pathology independent of amyloid, providing mechanistic insights into how APOE4 increases the risk of LBD.


Asunto(s)
Apolipoproteína E4 , Enfermedad por Cuerpos de Lewy/genética , Sinucleinopatías , alfa-Sinucleína , Péptidos beta-Amiloides , Animales , Apolipoproteína E4/genética , Ratones , Ratones Noqueados para ApoE , Sinucleinopatías/genética
5.
Nat Commun ; 9(1): 4388, 2018 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-30348994

RESUMEN

Apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease mainly by modulating amyloid-ß pathology. APOE ε4 is also shown to exacerbate neurodegeneration and neuroinflammation in a tau transgenic mouse model. To further evaluate the association of APOE genotype with the presence and severity of tau pathology, we express human tau via an adeno-associated virus gene delivery approach in human APOE targeted replacement mice. We find increased hyperphosphorylated tau species, tau aggregates, and behavioral abnormalities in mice expressing APOE ε2/ε2. We also show that in humans, the APOE ε2 allele is associated with increased tau pathology in the brains of progressive supranuclear palsy (PSP) cases. Finally, we identify an association between the APOE ε2/ε2 genotype and risk of tauopathies using two series of pathologically-confirmed cases of PSP and corticobasal degeneration. Our data together suggest APOE ε2 status may influence the risk and progression of tauopathy.


Asunto(s)
Apolipoproteína E2/metabolismo , Tauopatías/metabolismo , Tauopatías/patología , Alelos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Apolipoproteína E4/metabolismo , Progresión de la Enfermedad , Humanos , Ratones , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología
6.
Neuron ; 96(1): 115-129.e5, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28957663

RESUMEN

Diabetes and impaired brain insulin signaling are linked to the pathogenesis of Alzheimer's disease (AD). The association between diabetes and AD-associated amyloid pathology is stronger among carriers of the apolipoprotein E (APOE) ε4 gene allele, the strongest genetic risk factor for late-onset AD. Here we report that apoE4 impairs neuronal insulin signaling in human apoE-targeted replacement (TR) mice in an age-dependent manner. High-fat diet (HFD) accelerates these effects in apoE4-TR mice at middle age. In primary neurons, apoE4 interacts with insulin receptor and impairs its trafficking by trapping it in the endosomes, leading to impaired insulin signaling and insulin-stimulated mitochondrial respiration and glycolysis. In aging brains, the increased apoE4 aggregation and compromised endosomal function further exacerbate the inhibitory effects of apoE4 on insulin signaling and related functions. Together, our study provides novel mechanistic insights into the pathogenic mechanisms of apoE4 and insulin resistance in AD.


Asunto(s)
Apolipoproteína E4/metabolismo , Endosomas/metabolismo , Resistencia a la Insulina/fisiología , Insulina/fisiología , Neuronas/citología , Neuronas/metabolismo , Receptor de Insulina/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Respiración de la Célula/fisiología , Dieta Alta en Grasa , Femenino , Glucólisis/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/fisiología , Neuronas/fisiología , Cultivo Primario de Células
8.
Sci Rep ; 6: 26269, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27197045

RESUMEN

Nanomedicine is a burgeoning industry but an understanding of the interaction of nanomaterials with the immune system is critical for clinical translation. Macrophages play a fundamental role in the immune system by engulfing foreign particulates such as nanoparticles. When activated, macrophages form distinct phenotypic populations with unique immune functions, however the mechanism by which these polarized macrophages react to nanoparticles is unclear. Furthermore, strategies to selectively evade activated macrophage subpopulations are lacking. Here we demonstrate that stimulated macrophages possess higher phagocytic activities and that classically activated (M1) macrophages exhibit greater phagocytic capacity than alternatively activated (M2) macrophages. We show that modification of nanoparticles with polyethylene-glycol results in decreased clearance by all macrophage phenotypes, but importantly, coating nanoparticles with CD47 preferentially lowers phagocytic activity by the M1 phenotype. These results suggest that bio-inspired nanoparticle surface design may enable evasion of specific components of the immune system and provide a rational approach for developing immune tolerant nanomedicines.


Asunto(s)
Macrófagos/fisiología , Nanopartículas/química , Animales , Antígeno CD47/química , Activación de Macrófagos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Fagocitosis , Fenotipo , Polietilenglicoles/química , Poliestirenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...