Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(45): E10702-E10711, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30348802

RESUMEN

Tumor-specific T cell receptor (TCR) gene transfer enables specific and potent immune targeting of tumor antigens. Due to the prevalence of the HLA-A2 MHC class I supertype in most human populations, the majority of TCR gene therapy trials targeting public antigens have employed HLA-A2-restricted TCRs, limiting this approach to those patients expressing this allele. For these patients, TCR gene therapy trials have resulted in both tantalizing successes and lethal adverse events, underscoring the need for careful selection of antigenic targets. Broad and safe application of public antigen-targeted TCR gene therapies will require (i) selecting public antigens that are highly tumor-specific and (ii) targeting multiple epitopes derived from these antigens by obtaining an assortment of TCRs restricted by multiple common MHC alleles. The canonical cancer-testis antigen, NY-ESO-1, is not expressed in normal tissues but is aberrantly expressed across a broad array of cancer types. It has also been targeted with A2-restricted TCR gene therapy without adverse events or notable side effects. To enable the targeting of NY-ESO-1 in a broader array of HLA haplotypes, we isolated TCRs specific for NY-ESO-1 epitopes presented by four MHC molecules: HLA-A2, -B07, -B18, and -C03. Using these TCRs, we pilot an approach to extend TCR gene therapies targeting NY-ESO-1 to patient populations beyond those expressing HLA-A2.


Asunto(s)
Proteínas de Homeodominio/inmunología , Complejo Mayor de Histocompatibilidad/inmunología , Receptores de Antígenos de Linfocitos T/aislamiento & purificación , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Clonación Molecular , Humanos
2.
J Immunother Cancer ; 4: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26885372

RESUMEN

BACKGROUND: A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. METHODS: We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. RESULTS: Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. CONCLUSIONS: Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.

4.
Cancer Immunol Immunother ; 62(2): 321-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22923192

RESUMEN

Inhibitor of apoptosis proteins (IAPs) are critical in regulating apoptosis resistance in cancer. Antagonists of IAPs, such as LCL161, are in clinical development and show promise as anti-cancer agents for solid and hematological cancers, with preliminary data suggesting they may act as immunomodulators. IAP antagonists hypersensitize tumor cells to TNF-α-mediated apoptosis, an effect that may work in synergy with that of cancer vaccines. This study aimed to further investigate the immunomodulatory properties of LCL161 on human immune subsets. T lymphocytes treated with LCL161 demonstrated significantly enhanced cytokine secretion upon activation, with little effect on CD4 and CD8 T-cell survival or proliferation. LCL161 treatment of peripheral blood mononuclear cells significantly enhanced priming of naïve T cells with synthetic peptides in vitro. Myeloid dendritic cells underwent phenotypic maturation upon IAP antagonism and demonstrated a reduced capacity to cross-present a tumor antigen-based vaccine. These effects are potentially mediated through an observed activation of the canonical and non-canonical NF-κB pathways, following IAP antagonism with a resulting upregulation of anti-apoptotic molecules. In conclusion, this study demonstrated the immunomodulatory properties of antagonists at physiologically relevant concentrations and indicates their combination with immunotherapy requires further investigation.


Asunto(s)
Antineoplásicos/farmacología , Células Dendríticas/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Tiazoles/farmacología , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/farmacología , Apoptosis/efectos de los fármacos , Vacunas contra el Cáncer/farmacología , Células Cultivadas , Terapia Combinada , Citocinas/metabolismo , Células Dendríticas/inmunología , Humanos , Inmunoterapia , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , FN-kappa B/metabolismo , Péptidos/farmacología , Linfocitos T/inmunología , Regulación hacia Arriba/efectos de los fármacos
5.
PLoS One ; 7(9): e44707, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970293

RESUMEN

NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+) T cell epitope, NY-ESO-1(88-96) (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165) epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96) is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165). On the other hand, NY-ESO-1(157-165) is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35); whereas NY-ESO-1(88-96) was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96) is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+) melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96) from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+) T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Epítopos/inmunología , Antígeno HLA-B18/inmunología , Western Blotting , Línea Celular Tumoral , Humanos , Melanoma/inmunología , Melanoma/patología
6.
Blood ; 116(2): 218-25, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20430956

RESUMEN

The ability of dendritic cells (DCs) to cross-present protein tumor antigens to cytotoxic T lymphocytes (CTLs) underpins the success of therapeutic cancer vaccines. We studied cross-presentation of the cancer/testis antigen, NY-ESO-1, and the melanoma differentiation antigen, Melan-A by human DC subsets. Monocyte-derived DCs (MoDCs) efficiently cross-presented human leukocyte associated (HLA)-A2-restricted epitopes from either a formulated NY-ESO-1/ISCOMATRIX vaccine or when either antigen was mixed with ISCOMATRIX adjuvant. HLA-A2 epitope generation required endosomal acidification and was proteasome-independent for NY-ESO-1 and proteasome-dependent for Melan-A. Both MoDCs and CD1c(+) blood DCs cross-presented NY-ESO-1-specific HLA-A2(157-165)-, HLA-B7(60-72)-, and HLA-Cw3(92-100)-restricted epitopes when formulated as an NY-ESO-1/ISCOMATRIX vaccine, but this was limited when NY-ESO-1 and ISCOMATRIX adjuvant were added separately to the DC cultures. Finally, cross-presentation of NY-ESO-1(157-165)/HLA-A2, NY-ESO-1(60-72)/HLA-B7, and NY-ESO-1(92-100)/HLA-Cw3 epitopes was proteasome-dependent when formulated as immune complexes (ICs) but only proteasome-dependent for NY-ESO-1(60-72)/HLA-B7-restricted cross-presentation facilitated by ISCOMATRIX adjuvant. We demonstrate, for the first time, proteasome-dependent and independent cross-presentation of HLA-A-, B-, and C-restricted epitopes within the same full-length tumor antigen by human DCs. Our findings identify important differences in the capacities of human DC subsets to cross-present clinically relevant, full-length tumor antigens and how vaccine formulation impacts CTL responses in vivo.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Proteínas de Neoplasias/inmunología , Fragmentos de Péptidos/inmunología , Vacunas contra el Cáncer/inmunología , Colesterol/inmunología , Combinación de Medicamentos , Epítopos de Linfocito T/inmunología , Antígenos HLA-A/inmunología , Antígenos HLA-B/inmunología , Antígenos HLA-C/inmunología , Humanos , Activación de Linfocitos/inmunología , Antígeno MART-1 , Fosfolípidos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Saponinas/inmunología
7.
Cancer Immunol Immunother ; 58(3): 325-38, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18663444

RESUMEN

The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Neoplasias/sangre , Neoplasias/metabolismo , ARN Mensajero/metabolismo , Anticuerpos Monoclonales/química , Antígenos de Neoplasias/química , Vacunas contra el Cáncer , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Epítopos/química , Humanos , Interferón gamma/metabolismo , Neoplasias Pulmonares/metabolismo , Modelos Genéticos , Péptidos/química
8.
Cancer Immunol Immunother ; 56(12): 1885-95, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17487488

RESUMEN

There remains a need to identify novel epitopes of potential tumour target antigens for use in immunotherapy of cancer. Here, several melanoma tissues and cell lines but not normal tissues were found to overexpress the cancer-testis antigen HAGE at the mRNA and protein level. We identified a HAGE-derived 15-mer peptide containing a shorter predicted MHC class I-binding sequence within a class II-binding sequence. However, only the longer peptide was found to be both endogenously processed and immunogenic for T cells in transgenic mice in vivo, as well as for human T cells in vitro. A different class I-binding peptide, not contained within a longer class II sequence, was subsequently found to be both immunogenic and endogenously processed in transgenic mice, as was a second class II epitope. These novel HAGE-derived epitopes may contribute to the range of immunotherapeutic targets for use in cancer vaccination programs.


Asunto(s)
Antígenos de Neoplasias/metabolismo , ARN Helicasas DEAD-box/metabolismo , Inmunoterapia/métodos , Melanoma/terapia , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/biosíntesis , Animales , Presentación de Antígeno , Vacunas contra el Cáncer/química , Proliferación Celular , Células Dendríticas/citología , Epítopos/química , Humanos , Interferón gamma/metabolismo , Complejo Mayor de Histocompatibilidad , Melanoma/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...