Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(23): e202302490, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37014271

RESUMEN

Lanthipeptides are ribosomally-synthesized natural products from bacteria featuring stable thioether-crosslinks and various bioactivities. Herein, we report on a new clade of tricyclic class-IV lanthipeptides with curvocidin from Thermomonospora curvata as its first representative. We obtained crystal structures of the corresponding lanthipeptide synthetase CuvL that showed a circular arrangement of its kinase, lyase and cyclase domains, forming a central reaction chamber for the iterative substrate processing involving nine catalytic steps. The combination of experimental data and artificial intelligence-based structural models identified the N-terminal subdomain of the kinase domain as the primary site of substrate recruitment. The ribosomal precursor peptide of curvocidin employs an amphipathic α-helix in its leader region as an anchor to CuvL, while its substrate core shuttles within the central reaction chamber. Our study thus reveals general principles of domain organization and substrate recruitment of class-IV and class-III lanthipeptide synthetases.


Asunto(s)
Inteligencia Artificial , Ligasas , Ligasas/química , Péptidos/química
2.
Acc Chem Res ; 55(21): 3099-3109, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215688

RESUMEN

The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.


Asunto(s)
Ceramidas , Esfingosina , Humanos , Ceramidas/química , Ceramidas/metabolismo , Proteínas/química , Procesamiento Proteico-Postraduccional , Cisteína/metabolismo
3.
J Am Chem Soc ; 143(35): 14322-14331, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459587

RESUMEN

Synthetic methods on the macrocyclization of peptides are of high interest since they facilitate the synthesis of various types of potentially bioactive compounds, e.g. addressing targets like protein-protein-interactions. Herein, we report on an efficient method to construct tryptathionine-cross-links in peptides between the amino acids Trp and Cys. This reaction not only is the basis for the total synthesis of the death cap toxin α-amanitin but also provides rapid access to various new amanitin analogues. This study for the first time presents a systematic compilation of structure-activity relations (SAR) of amatoxins with regard to RNA polymerase II inhibition and cytotoxicity with one amanitin derivative of superior RNAP II inhibition. The present approach paves the way for the synthesis of structurally diverse amatoxins as future payloads for antibody-toxin conjugates in cancer therapy.

4.
Angew Chem Int Ed Engl ; 59(14): 5500-5504, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31846557

RESUMEN

The toxic bicyclic octapeptide α-amanitin is mostly found in different species of the mushroom genus Amanita, with the death cap (Amanita phalloides) as one of the most prominent members. Due to its high selective inhibition of RNA polymerase II, which is directly linked to its high toxicity, particularly to hepatocytes, α-amanitin received an increased attention as a toxin-component of antibody-drug conjugates (ADC) in cancer research. Furthermore, the isolation of α-amanitin from mushrooms as the sole source severely restricts compound supply as well as further investigations, as structure-activity relationship (SAR) studies. Based on a straightforward access to the non-proteinogenic amino acid dihydroxyisoleucine, we herein present a robust total synthesis of α-amanitin providing options for production at larger scale as well as future structural diversifications.


Asunto(s)
Alfa-Amanitina/síntesis química , Alfa-Amanitina/química , Amanita/química , Amanita/metabolismo , Ciclización , Inmunoconjugados/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...