Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639156

RESUMEN

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Asunto(s)
Neoplasias Cerebelosas , Glioblastoma , Meduloblastoma , Humanos , Ratones , Animales , Meduloblastoma/tratamiento farmacológico , FN-kappa B/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Proteína Glutamina Gamma Glutamiltransferasa 2 , Calidad de Vida , Fagocitosis , Macrófagos , Inflamación/metabolismo
2.
Free Radic Biol Med ; 167: 81-93, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711419

RESUMEN

The macrophage capping protein CAPG belongs to the gelsolin superfamily which modulates actin dynamics by capping the growing end of actin filaments in a Ca2+- and PIP2-dependent manner resulting in polymerization inhibition of actin filaments. In the last years, additional functions for CAPG in transcription regulation were described and higher CAPG amounts have been linked to increased invasiveness and migration behavior in different human tumor entities like e.g. glioblastoma. Nevertheless, there is a lack of knowledge how additional functions of CAPG are regulated. As CAPG contains several cysteine residues which may be accessible to oxidation we were especially interested to investigate how alterations in the cysteine oxidation state may influence the function, localization, and regulation of CAPG. In the present study, we provide strong evidence that CAPG is a redox-sensitive protein and identified two cysteines: C282 and C290 as reversibly oxidized in glioblastoma cell lines. Whereas no evidence could be found that the canonical actin capping function of CAPG is redox-regulated, our results point to a novel role of the identified cysteines in the regulation of cell migration. Along with this, we found a localization shift out of the nucleus of CAPG and RAVER1, a potential interaction partner identified in our study which might explain the observed altered cell migration properties. The newly identified redox sensitive cysteines of CAPG could perspectively be considered as new targets for controlling tumor invasive properties.


Asunto(s)
Glioblastoma , Actinas/genética , Actinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Glioblastoma/genética , Humanos , Macrófagos/metabolismo , Proteínas de Microfilamentos , Proteínas Nucleares , Oxidación-Reducción
3.
Nat Commun ; 11(1): 2936, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522993

RESUMEN

Stress response pathways are critical for cellular homeostasis, promoting survival through adaptive changes in gene expression and metabolism. They play key roles in numerous diseases and are implicated in cancer progression and chemoresistance. However, the underlying mechanisms are only poorly understood. We have employed a multi-omics approach to monitor changes to gene expression after induction of a stress response pathway, the unfolded protein response (UPR), probing in parallel the transcriptome, the proteome, and changes to translation. Stringent filtering reveals the induction of 267 genes, many of which have not previously been implicated in stress response pathways. We experimentally demonstrate that UPR-mediated translational control induces the expression of enzymes involved in a pathway that diverts intermediate metabolites from glycolysis to fuel mitochondrial one-carbon metabolism. Concomitantly, the cells become resistant to the folate-based antimetabolites Methotrexate and Pemetrexed, establishing a direct link between UPR-driven changes to gene expression and resistance to pharmacological treatment.


Asunto(s)
Antimetabolitos/farmacología , Ácido Fólico/farmacología , Regulón/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Animales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Metotrexato/farmacología , Pemetrexed/farmacología , Proteoma/efectos de los fármacos , Proteoma/genética , Regulón/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
4.
Cell Metab ; 31(5): 920-936.e7, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32213345

RESUMEN

Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine's functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality.


Asunto(s)
Glutatión/metabolismo , Serina/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Ratones
6.
Sci Rep ; 9(1): 8836, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222112

RESUMEN

Many cellular events are driven by changes in protein expression, measurable by mass spectrometry or antibody-based assays. However, using conventional technology, the analysis of transcription factor or membrane receptor expression is often limited by an insufficient sensitivity and specificity. To overcome this limitation, we have developed a high-resolution targeted proteomics strategy, which allows quantification down to the lower attomol range in a straightforward way without any prior enrichment or fractionation approaches. The method applies isotope-labeled peptide standards for quantification of the protein of interest. As proof of principle, we applied the improved workflow to proteins of the unfolded protein response (UPR), a signaling pathway of great clinical importance, and could for the first time detect and quantify all major UPR receptors, transducers and effectors that are not readily detectable via antibody-based-, SRM- or conventional PRM assays. As transcription and translation is central to the regulation of UPR, quantification and determination of protein copy numbers in the cell is important for our understanding of the signaling process as well as how pharmacologic modulation of these pathways impacts on the signaling. These questions can be answered using our newly established workflow as exemplified in an experiment using UPR perturbation in a glioblastoma cell lines.


Asunto(s)
Glioblastoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Línea Celular Tumoral , Dosificación de Gen , Glioblastoma/química , Glioblastoma/patología , Humanos , Marcaje Isotópico , Proteínas de la Membrana/análisis , Proteínas de la Membrana/normas , Péptidos/normas , Proteómica/normas , Factores de Transcripción/análisis , Factores de Transcripción/normas
7.
Acta Neuropathol ; 138(2): 275-293, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31062076

RESUMEN

Glioblastomas strongly invade the brain by infiltrating into the white matter along myelinated nerve fiber tracts even though the myelin protein Nogo-A prevents cell migration by activating inhibitory RhoA signaling. The mechanisms behind this long-known phenomenon remained elusive so far, precluding a targeted therapeutic intervention. This study demonstrates that the prevalent activation of AKT in gliomas increases the ER protein-folding capacity and enables tumor cells to utilize a side effect of RhoA activation: the perturbation of the IRE1α-mediated decay of SPARC mRNA. Once translation is initiated, glioblastoma cells rapidly secrete SPARC to block Nogo-A from inhibiting migration via RhoA. By advanced ultramicroscopy for studying single-cell invasion in whole, undissected mouse brains, we show that gliomas require SPARC for invading into white matter structures. SPARC depletion reduces tumor dissemination that significantly prolongs survival and improves response to cytostatic therapy. Our finding of a novel RhoA-IRE1 axis provides a druggable target for interfering with SPARC production and underscores its therapeutic value.


Asunto(s)
Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Proteínas de Neoplasias/fisiología , Proteínas Nogo/biosíntesis , Osteonectina/biosíntesis , Biosíntesis de Proteínas , Sustancia Blanca/patología , Proteína de Unión al GTP rhoA/fisiología , Animales , Unión Competitiva , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Invasividad Neoplásica , Proteínas Nogo/genética , Osteonectina/genética , Dominios Proteicos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/fisiología , Células Tumorales Cultivadas , Sustancia Blanca/metabolismo
8.
Eur J Immunol ; 49(5): 770-781, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30729501

RESUMEN

Mutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias.


Asunto(s)
Susceptibilidad a Enfermedades , Encefalomielitis Autoinmune Experimental/etiología , Factores de Intercambio de Guanina Nucleótido/genética , Recuento de Linfocitos , Mutación , Células Th17/inmunología , Células Th17/metabolismo , Animales , Biomarcadores , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Expresión Génica , Predisposición Genética a la Enfermedad , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
9.
Cancer Res ; 78(24): 6785-6794, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30401716

RESUMEN

: Amplification of the EGFR gene and its truncation mutant EGFRvIII are hallmarks of glioblastoma. Although coexpression of EGFR and EGFRvIII confers a growth advantage, how EGFR and EGFRvIII influence the tumor microenvironment remains incompletely understood. Here, we show that EGFR and EGFRvIII cooperate to induce macrophage infiltration via upregulation of the chemokine CCL2. EGFRvIII was significantly enriched in glioblastoma patient samples with high CCL2, and knockout of CCL2 in tumors coexpressing EGFR and EGFRvIII led to decreased infiltration of macrophages. KRAS was a critical signaling intermediate for EGFR- and EGFRvIII-induced expression of CCL2. Our results illustrate how EGFR and EGFRvIII direct the microenvironment in glioblastoma. SIGNIFICANCE: Full-length EGFR and truncated EGFRvIII work through KRAS to upregulate the chemokine CCL2 and drive macrophage infiltration in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Quimiocina CCL2/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Citocinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Microglía/metabolismo , Trasplante de Neoplasias , Fosforilación , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Microambiente Tumoral , Regulación hacia Arriba
10.
J Endocr Soc ; 2(3): 266-278, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600293

RESUMEN

Gain-of-function somatic mutations in the ubiquitin specific protease 8 (USP8) gene have recently been reported as a cause of pituitary adenomas in Cushing disease. Molecular diagnostic testing of tumor tissue may aid in the diagnosis of specimens obtained through therapeutic transsphenoidal surgery; however, for small tumors, availability of fresh tissue is limited, and contamination with normal tissue is frequent. We performed molecular testing of DNA isolated from single formalin-fixed and paraffin-embedded (FFPE) tissue sections of 42 pituitary adenomas from patients with Cushing disease (27 female patients and 15 male patients; mean age at surgery, 42.5 years; mean tumor size, 12.2 mm). By Sanger sequencing, we identified previously reported USP8 missense mutations in six tumors. Targeted next-generation sequencing (NGS) revealed known or previously undescribed missense mutations in three additional tumors (two with two different mutations each), with mutant allele frequencies as low as 3%. Of the nine tumors with USP8 mutations (mutation frequency, 21.4%), seven were from female patients (mutation frequency, 25.9%), and two were from male patients (mutation frequency, 13.3%). Mutant tumors were on average 11.4 mm in size, and patients with mutations were on average 43.9 years of age. The overall USP8 mutation frequency in our cohort was lower than in previously described cohorts, and we did not observe USP8 deletions that were frequent in other cohorts. We demonstrate that testing for USP8 variants can be performed from small amounts of FFPE tissue. NGS showed higher sensitivity for USP8 mutation detection than did Sanger sequencing. Assessment for USP8 mutations may complement histopathological diagnosis.

11.
Nat Rev Clin Oncol ; 14(7): 434-452, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28031556

RESUMEN

Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.


Asunto(s)
Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/terapia , Glioma/clasificación , Glioma/terapia , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Glioma/genética , Glioma/patología , Humanos , Biología Molecular , Guías de Práctica Clínica como Asunto , Organización Mundial de la Salud
12.
Nat Commun ; 6: 7391, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26067104

RESUMEN

In vivo functional investigation of oncogenes using somatic gene transfer has been successfully exploited to validate their role in tumorigenesis. For tumour suppressor genes this has proven more challenging due to technical aspects. To provide a flexible and effective method for investigating somatic loss-of-function alterations and their influence on tumorigenesis, we have established CRISPR/Cas9-mediated somatic gene disruption, allowing for in vivo targeting of TSGs. Here we demonstrate the utility of this approach by deleting single (Ptch1) or multiple genes (Trp53, Pten, Nf1) in the mouse brain, resulting in the development of medulloblastoma and glioblastoma, respectively. Using whole-genome sequencing (WGS) we characterized the medulloblastoma-driving Ptch1 deletions in detail and show that no off-targets were detected in these tumours. This method provides a fast and convenient system for validating the emerging wealth of novel candidate tumour suppressor genes and the generation of faithful animal models of human cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes/métodos , Glioblastoma/genética , Meduloblastoma/genética , Animales , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , Glioblastoma/patología , Meduloblastoma/patología , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neurofibromina 1/genética , Fosfohidrolasa PTEN/genética , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/genética
13.
Cancer Cell ; 27(2): 211-22, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25620030

RESUMEN

Controversy over the role of antioxidants in cancer has persisted for decades. Here, we demonstrate that synthesis of the antioxidant glutathione (GSH), driven by GCLM, is required for cancer initiation. Genetic loss of Gclm prevents a tumor's ability to drive malignant transformation. Intriguingly, these findings can be replicated using an inhibitor of GSH synthesis, but only if delivered prior to cancer onset, suggesting that at later stages of tumor progression GSH becomes dispensable potentially due to compensation from alternative antioxidant pathways. Remarkably, combined inhibition of GSH and thioredoxin antioxidant pathways leads to a synergistic cancer cell death in vitro and in vivo, demonstrating the importance of these two antioxidants to tumor progression and as potential targets for therapeutic intervention.


Asunto(s)
Antioxidantes/metabolismo , Neoplasias de la Mama/genética , Glutamato-Cisteína Ligasa/genética , Neoplasias Mamarias Animales/genética , Animales , Neoplasias de la Mama/patología , Carcinogénesis , Femenino , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/genética , Humanos , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/patología , Ratones , Ratones Transgénicos , Tiorredoxinas/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(3): 1060-5, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24398517

RESUMEN

The ability to mount a strong immune response against pathogens is crucial for mammalian survival. However, excessive and uncontrolled immune reactions can lead to autoimmunity. Unraveling how the reactive versus tolerogenic state is controlled might point toward novel therapeutic strategies to treat autoimmune diseases. The surface receptor Toso/Faim3 has been linked to apoptosis, IgM binding, and innate immune responses. In this study, we used Toso-deficient mice to investigate the importance of Toso in tolerance and autoimmunity. We found that Toso(-/-) mice do not develop severe experimental autoimmune encephalomyelitis (EAE), a mouse model for the human disease multiple sclerosis. Toso(-/-) dendritic cells were less sensitive to Toll-like receptor stimulation and induced significantly lower levels of disease-associated inflammatory T-cell responses. Consistent with this observation, the transfer of Toso(-/-) dendritic cells did not induce autoimmune diabetes, indicating their tolerogenic potential. In Toso(-/-) mice subjected to EAE induction, we found increased numbers of regulatory T cells and decreased encephalitogenic cellular infiltrates in the brain. Finally, inhibition of Toso activity in vivo at either an early or late stage of EAE induction prevented further disease progression. Taken together, our data identify Toso as a unique regulator of inflammatory autoimmune responses and an attractive target for therapeutic intervention.


Asunto(s)
Proteínas Portadoras/metabolismo , Células Dendríticas/citología , Encefalomielitis Autoinmune Experimental/inmunología , Proteínas de la Membrana/metabolismo , Linfocitos T Reguladores/citología , Animales , Diferenciación Celular , Proliferación Celular , Citocinas/metabolismo , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores/inmunología , Células TH1/citología , Células Th17/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...