Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Parasit Vectors ; 17(1): 349, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164768

RESUMEN

BACKGROUND: Eave spaces are major entry points through which malaria vectors enter houses. Interventions that target mosquitoes at the eaves have recently been developed. However, most of these interventions are based on insecticides for which resistance has been reported. Here we evaluated the efficacy of mosquito electrocuting eave tubes (MEETs) against Anopheles gambiae sensu stricto (An. gambiae s.s.) and Anopheles funestus s.s. under semi-field conditions. METHODS: Experiments were conducted in two semi-field chambers, each containing one experimental hut. Six electrocuting eave tubes were installed in each hut to assess their impact on laboratory-reared An. gambiae s.s. and An. funestus s.s.. Each species was assessed separately over 10 nights by releasing 200 unfed females per night into each chamber. One volunteer slept in each hut from 7 p.m. to 5 a.m. Mosquitoes were collected indoors and outdoors using mouth and Prokopack aspirators. RESULTS: The placement of MEETs significantly reduced the nightly An. gambiae s.s. indoor and outdoor biting, by 21.1% and 37.4%, respectively. Indoor-biting An. funestus s.s. were reduced by 87.5% while outdoor-biting numbers of An. funestus s.s. declined by 10.4%. CONCLUSIONS: MEETs represent a promising tool for controlling mosquitoes at the point of house entry. Further validation of their potential under natural field conditions is necessary. Several advantages over insecticide-based eave tubes are indicated and discussed in this article.


Asunto(s)
Anopheles , Control de Mosquitos , Mosquitos Vectores , Animales , Anopheles/fisiología , Control de Mosquitos/métodos , Control de Mosquitos/instrumentación , Tanzanía , Femenino , Mosquitos Vectores/fisiología , Humanos , Malaria/prevención & control , Malaria/transmisión , Vivienda , Insecticidas/farmacología
2.
Insects ; 14(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754698

RESUMEN

Globalization and climate change are key drivers for arboviral and parasitic infectious diseases to expand geographically, posing a growing threat to human health and biodiversity. New non-pesticidal approaches are urgently needed because of increasing insecticide resistance and the negative human and environmental health impacts of synthetic pyrethroids used for fogging. Here, we report the complete and rapid removal of two mosquito species (Aedes aegypti L. and Culex quinquefasciatus Say), both arboviral disease vectors, with odor-baited mosquito traps (at a density of 10 traps/hectare) from a 7.2-hectare island in the Philippines in just 5 months. This rapid elimination of mosquitoes from an island is remarkable and provides further proof that high-density mosquito trapping can play a significant role in mosquito- and vector-borne disease elimination in small islands around the world.

3.
Ned Tijdschr Geneeskd ; 1672023 05 23.
Artículo en Holandés | MEDLINE | ID: mdl-37235588

RESUMEN

Since 2005, in a growing number of Dutch municipalities, increasing numbers of six exotic mosquito species have been reported. To prevent incursions, the Government has introduced policies that so far have not alleviated the problem. Populations of the Asian bush mosquito in Flevoland, Urk and parts of southern Limburg are now firmly established. The Government considers the risk of disease transmission by these exotic species as 'negligibly small'. Nevertheless, in 2020, seven citizens in Utrecht and Arnhem got infected with the West Nile virus, transmitted by endemic mosquitoes. How concerning are these developments, and should Dutch doctors be prepared to manage exotic diseases in affected patients?We conclude that large-scale operations with a focus on elimination rather than control of exotic mosquitoes are warranted, that policies should be improved and strictly adhered to, and more transparency by the Government is needed to prevent these problems from spiralling out of control.


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Países Bajos , Mosquitos Vectores , Fiebre del Nilo Occidental/epidemiología
4.
Insects ; 13(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36135506

RESUMEN

Globally, environmental impacts and insecticide resistance are forcing pest control organizations to adopt eco-friendly and insecticide-free alternatives to reduce the risk of mosquito-borne diseases, which affect millions of people, such as dengue, chikungunya or Zika virus. We used, for the first time, a combination of human odor-baited mosquito traps (at 6.0 traps/ha), oviposition traps (7.2 traps/ha) and larval source management (LSM) to practically eliminate populations of the Asian tiger mosquito Aedes albopictus (peak suppression 93.0% (95% CI 91.7-94.4)) and the Southern house mosquito Culex quinquefasciatus (peak suppression 98.3% (95% CI 97.0-99.5)) from a Maldivian island (size: 41.4 ha) within a year and thereafter observed a similar collapse of populations on a second island (size 49.0 ha; trap densities 4.1/ha and 8.2/ha for both trap types, respectively). On a third island (1.6 ha in size), we increased the human odor-baited trap density to 6.3/ha and then to 18.8/ha (combined with LSM but without oviposition traps), after which the Aedes mosquito population was eliminated within 2 months. Such suppression levels eliminate the risk of arboviral disease transmission for local communities and safeguard tourism, a vital economic resource for small island developing states. Terminating intense insecticide use (through fogging) benefits human and environmental health and restores insect biodiversity, coral reefs and marine life in these small and fragile island ecosystems. Moreover, trapping poses a convincing alternative to chemical control and reaches impact levels comparable to contemporary genetic control strategies. This can benefit numerous communities and provide livelihood options in small tropical islands around the world where mosquitoes pose both a nuisance and disease threat.

6.
Malar J ; 16(1): 276, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778169

RESUMEN

BACKGROUND: Whilst significant progress has been made in the fight against malaria, vector control continues to rely on just two insecticidal methods, i.e., indoor residual spraying and insecticidal bed nets. House improvement shows great potential to complement these methods and may further reduce indoor mosquito biting and disease transmission. Open eaves serve as important mosquito house entry points and provide a suitable location for intercepting host-seeking anophelines. This study describes semi-field experiments in western Kenya with eave tubes, a household protection product that leverages the natural behaviour of host-seeking malaria mosquitoes. METHODS: Semi-field experiments were conducted in two screen-houses. In both of these a typical western Kenyan house, with mud walls and corrugated iron sheet roofing, was built. Eave tubes with bendiocarb- or deltamethrin-treated eave tube inserts were installed in the houses, and the impact on house entry of local strains of Anopheles gambiae and Anopheles arabiensis was determined. Experiments with open eave tubes (no netting) were conducted as a control and to determine house entry through eave tubes. Insecticidal activity of the inserts treated with insecticide was examined using standard 3-min exposure bioassays. RESULTS: Experiments with open eave tubes showed that a high percentage of released mosquitoes entered the house through tubes during experimental nights. When tubes were fitted with bendiocarb- or deltamethrin-treated inserts, on average 21% [95% CI 18-25%] and 39% [CI 26-51%] of An. gambiae s.s. were recaptured the following morning, respectively. This contrasts with 71% [CI 60-81%] in the treatment with open eaves and 54% [CI 47-61%] in the treatment where inserts were treated with fluorescent dye powder. For An. arabiensis recapture was 21% [CI 14-27%] and 22% [CI 18-25%], respectively, compared to 46% [CI 40-52%] and 25% [CI 15-35%] in the treatments with open tubes and fluorescent dye. CONCLUSIONS: Insecticide-treated eave tubes resulted in significant reductions in recapture rates for both malaria vector species, representing the first and promising results with this novel control tool against Kenyan malaria vectors. Further field evaluation of eave tubes under more realistic field conditions, as well as their comparison with existing approaches in terms of cost-effectiveness and community acceptance, is called for.


Asunto(s)
Anopheles , Vivienda , Insecticidas , Malaria/prevención & control , Control de Mosquitos/instrumentación , Control de Mosquitos/métodos , Mosquitos Vectores , Animales , Femenino , Humanos , Mordeduras y Picaduras de Insectos/prevención & control , Kenia , Nitrilos , Fenilcarbamatos , Piretrinas
7.
Malariaworld J ; 8: 9, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-34532232

RESUMEN

BACKGROUND: Eave tubes are novel mosquito control devices that help to protect households against malaria vectors and other mosquitoes. They are installed in the upper walls of human habitations after the eaves have been closed. Mosquitoes trying to enter through these tubes are intercepted by electrostatic netting that can be treated with a variety of insecticides. Using video, mosquito behaviour and duration of contact with netting in eave tubes was recorded and analysed to assess contamination with insecticides under semi-field and field conditions. MATERIALS AND METHODS: Off-the-shelf action cameras were used to observe behaviour of mosquitoes in eave tubes near Ifakara, Tanzania. In an experimental hut in a screen house, we observed Anopheles arabiensis females on electrostatic eave tube netting treated with bendiocarb powder or with Beauveria bassiana spores, both in comparison to untreated netting. In village houses that had been equipped with eave tubes we observed the behaviour of wild mosquitoes towards electrostatic netting treated with bendiocarb. Results were evaluated using a short-contact assay (5 second exposure). RESULTS: In the semi-field setup, the median contact time of An. arabiensis on bendiocarb-powdered eave tube nets was 276.4 sec (n=56), compared to 26.3 sec on the control (n=59). Of all the mosquitoes observed on the treated net, 94.6% had contact times of more than 5 seconds on the bendiocarb-powdered netting. The median time on nets powdered with B. bassiana spores was 34.4 sec (n=26), compared 37.1 sec in the untreated control (n=22). 88.5% of the mosquitoes spent more than 5 seconds on the treated nets. In the field we recorded 106 individual mosquitoes of unknown species inside tubes. They spent a median time of 70.9 sec on the bendiocarb-treated netting, with 90.6% remaining there for more than 5 seconds. CONCLUSIONS: We have found no indication that the behaviour of mosquitoes on electrostatic eave tube netting, treated either with bendiocarb powder or with B. bassiana spores, interferes with successful transfer of lethal doses of these insecticidal actives. The videographic set-up used in this study is simple, sturdy and reliable enough to observe and analyse mosquito behaviour under field conditions.

8.
Malar J ; 15(1): 447, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27586055

RESUMEN

BACKGROUND: Presented here are a series of preliminary experiments evaluating "eave tubes"-a technology that combines house screening with a novel method of delivering insecticides for control of malaria mosquitoes. METHODS: Eave tubes were first evaluated with overnight release and recapture of mosquitoes in a screened compartment containing a hut and human sleeper. Recapture numbers were used as a proxy for overnight survival. These trials tested physical characteristics of the eave tubes (height, diameter, angle), and different active ingredients (bendiocarb, LLIN material, fungus). Eave tubes in a hut with closed eaves were also compared to an LLIN protecting a sleeper in a hut with open eaves. Eave tubes were then evaluated in a larger compartment containing a self-replicating mosquito population, vegetation, and multiple houses and cattle sheds. In this "model village", LLINs were introduced first, followed by eave tubes and associated house modifications. RESULTS: Initial testing suggested that tubes placed horizontally and at eave height had the biggest impact on mosquito recapture relative to respective controls. Comparison of active ingredients suggested roughly equivalent effects from bendiocarb, LLIN material, and fungal spores (although speed of kill was slower for fungus). The impact of treated netting on recapture rates ranged from 50 to 70 % reduction relative to controls. In subsequent experiments comparing bendiocarb-treated netting in eave tubes against a standard LLIN, the effect size was smaller but the eave tubes with closed eaves performed at least as well as the LLIN with open eaves. In the model village, introducing LLINs led to an approximate 60 % reduction in larval densities and 85 % reduction in indoor catches of host-seeking mosquitoes relative to pre-intervention values. Installing eave tubes and screening further reduced larval density (93 % relative to pre intervention values) and virtually eliminated indoor host-seeking mosquitoes. When the eave tubes and screening were removed, larval and adult catches recovered to pre-eave tube levels. CONCLUSIONS: These trials suggest that the "eave tube" package can impact overnight survival of host-seeking mosquitoes and can suppress mosquito populations, even in a complex environment. Further testing is now required to evaluate the robustness of these findings and demonstrate impact under field conditions.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Femenino , Voluntarios Sanos , Humanos , Tanzanía
9.
Malar J ; 15(1): 404, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515306

RESUMEN

In spite of massive progress in the control of African malaria since the turn of the century, there is a clear and recognized need for additional tools beyond long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) of insecticides, to progress towards elimination. Moreover, widespread and intensifying insecticide resistance requires alternative control agents and delivery systems to enable development of effective insecticide resistance management strategies. This series of articles presents a novel concept for malaria vector control, the 'eave tube', which may fulfil these important criteria. From its conceptualization to laboratory and semi-field testing, to demonstration of potential for implementation, the stepwise development of this new vector control approach is described. These studies suggest eave tubes (which comprise a novel way of delivering insecticides plus screening to make the house more 'mosquito proof') could be a viable, cost-effective, and acceptable control tool for endophilic and endophagic anophelines, and possibly other (nuisance) mosquitoes. The approach could be applicable in a wide variety of housing in sub-Saharan Africa, and possibly beyond, for vectors that use the eave as their primary house entry point. The results presented in these articles were generated during an EU-FP7 funded project, the mosquito contamination device (MCD) project, which ran between 2012 and 2015. This was a collaborative project undertaken by vector biologists, product developers, modellers, materials scientists, and entrepreneurs from five different countries.


Asunto(s)
Transmisión de Enfermedad Infecciosa/prevención & control , Vivienda , Malaria/prevención & control , Control de Mosquitos/métodos , África del Sur del Sahara , Animales , Femenino , Humanos
10.
Proc Natl Acad Sci U S A ; 112(39): 12081-6, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26324912

RESUMEN

Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations.


Asunto(s)
Culicidae/efectos de los fármacos , Resistencia a los Insecticidas/fisiología , Insecticidas/toxicidad , Malaria/prevención & control , Mosquiteros , Piretrinas/toxicidad , África , Animales , Disponibilidad Biológica , Culicidae/fisiología , Nitrilos/toxicidad , Electricidad Estática , Factores de Tiempo
11.
Malar J ; 14: 10, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25604997

RESUMEN

BACKGROUND: Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods. METHODS: Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10(th) generation and compared to founder wild population. RESULTS: In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population. CONCLUSIONS: Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.


Asunto(s)
Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Variación Genética , Animales , Anopheles/genética , Ecosistema , Femenino , Genotipo , Endogamia , Masculino , Control de Mosquitos/métodos , Fenotipo , Tanzanía
12.
Parasit Vectors ; 7: 200, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24766772

RESUMEN

BACKGROUND: The increasing global threat of Dengue demands new and easily applicable vector control methods. Ovitraps provide a low-tech and inexpensive means to combat Dengue vectors. Here we describe the development and optimization process of a novel contamination device that targets multiple life-stages of the Aedes aegypti mosquito. Special focus is directed to the diverse array of control agents deployed in this trap, covering adulticidal, larvicidal and autodissemination impacts. METHODS: Different trap prototypes and their parts are described, including a floater to contaminate alighting gravid mosquitoes. The attractiveness of the trap, different odor lures and floater design were studied using fluorescent powder adhering to mosquito legs and via choice tests. We demonstrate the mosquitocidal impacts of the control agents: a combination of the larvicide pyriproxyfen and the adulticidal fungus Beauveria bassiana. The impact of pyriproxyfen was determined in free-flight dissemination experiments. The effect on larval development inside the trap and in surrounding breeding sites was measured, as well as survival impacts on recaptured adults. RESULTS: The developmental process resulted in a design that consists of a black 3 Liter water-filled container with a ring-shaped floater supporting vertically placed gauze dusted with the control agents. On average, 90% of the mosquitoes in the fluorescence experiments made contact with the gauze on the floater. Studies on attractants indicated that a yeast-containing tablet was the most attractive odor lure. Furthermore, the fungus Beauveria bassiana was able to significantly increase mortality of the free-flying adults compared to controls. Dissemination of pyriproxyfen led to >90% larval mortality in alternative breeding sites and 100% larval mortality in the trap itself, against a control mortality of around 5%. CONCLUSION: This ovitrap is a promising new tool in the battle against Dengue. It has proven to be attractive to Aedes aegypti mosquitoes and effective in contaminating these with Beauveria bassiana. Furthermore, we show that the larvicide pyriproxyfen is successfully disseminated to breeding sites close to the trap. Its low production and operating costs enable large scale deployment in Dengue-affected locations.


Asunto(s)
Aedes , Agentes de Control Biológico , Control de Mosquitos/instrumentación , Odorantes , Animales , Conducta Animal , Dengue/prevención & control , Dengue/transmisión , Femenino , Insectos Vectores/efectos de los fármacos , Estadios del Ciclo de Vida , Control de Mosquitos/métodos , Oviposición
13.
Acta Trop ; 132 Suppl: S2-11, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24252487

RESUMEN

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue.


Asunto(s)
Fenómenos Biológicos , Culicidae/genética , Culicidae/fisiología , Control de Mosquitos/métodos , Control Biológico de Vectores/métodos , Animales , Masculino
14.
Malar J ; 12: 24, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23331947

RESUMEN

BACKGROUND: The goal of malaria elimination necessitates an improved understanding of any fine-scale geographic variations in transmission risk so that complementary vector control tools can be integrated into current vector control programmes as supplementary measures that are spatially targeted to maximize impact upon residual transmission. This study examines the distribution of host-seeking malaria vectors at households within two villages in rural Tanzania. METHODS: Host-seeking mosquitoes were sampled from 72 randomly selected households in two villages on a monthly basis throughout 2008 using CDC light-traps placed beside occupied nets. Spatial autocorrelation in the dataset was examined using the Moran's I statistic and the location of any clusters was identified using the Getis-Ord Gi* statistic. Statistical associations between the household characteristics and clusters of mosquitoes were assessed using a generalized linear model for each species. RESULTS: For both Anopheles gambiae sensu lato and Anopheles funestus, the density of host-seeking females was spatially autocorrelated, or clustered. For both species, houses with low densities were clustered in the semi-urban village centre while houses with high densities were clustered in the periphery of the villages. Clusters of houses with low or high densities of An. gambiae s.l. were influenced by the number of residents in nearby houses. The occurrence of high-density clusters of An. gambiae s.l. was associated with lower elevations while An. funestus was also associated with higher elevations. Distance from the village centre was also positively correlated with the number of household occupants and having houses constructed with open eaves. CONCLUSION: The results of the current study highlight that complementary vector control tools could be most effectively targeted to the periphery of villages where the households potentially have a higher hazard (mosquito densities) and vulnerability (open eaves and larger households) to malaria infection.


Asunto(s)
Anopheles/fisiología , Vectores de Enfermedades , Malaria/epidemiología , Malaria/transmisión , Animales , Conducta Alimentaria , Femenino , Humanos , Población Rural , Tanzanía/epidemiología
15.
Malar J ; 11: 200, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22704585

RESUMEN

BACKGROUND/METHODS: Qualitative studies suggest that bed nets affect the thermal comfort of users. To understand and reduce this discomfort the effect of bed nets on temperature, humidity, and airflow was measured in rural homes in Asia and Africa, as well as in an experimental wind tunnel. Two investigators with architectural training selected 60 houses in The Gambia, Tanzania, Philippines, and Thailand. Data-loggers were used to measure indoor temperatures in hourly intervals over a 12 months period. In a subgroup of 20 houses airflow, temperature and humidity were measured at five-minute intervals for one night from 21.00 to 6.00 hrs inside and outside of bed nets using sensors and omni-directional thermo-anemometers. An investigator set up a bed net with a mesh size of 220 holes per inch 2 in each study household and slept under the bed net to simulate a realistic environment. The attenuation of airflow caused by bed nets of different mesh sizes was also measured in an experimental wind tunnel. RESULTS: The highest indoor temperatures (49.0 C) were measured in The Gambia. During the hottest months of the year the mean temperature at night (9 pm) was between 33.1 C (The Gambia) and 26.2 C (Thailand). The bed net attenuated the airflow from a minimum of 27% (Philippines) to a maximum of 71% (The Gambia). Overall the bed nets reduced airflow compared to un-attenuated airflow from 9 to 4 cm sec-1 or 52% (p<0.001). In all sites, no statistically significant difference in temperature or humidity was detected between the inside and outside of the bed net. Wind tunnel experiments with 11 different mesh-sized bed nets showed an overall reduction in airflow of 64% (range 55 - 71%) compared to un-attenuated airflow. As expected, airflow decreased with increasing net mesh size. Nets with a mesh of 136 holes inch-2 reduced airflow by 55% (mean; range 51 - 73%). A denser net (200 holes inch-2) attenuated airflow by 59% (mean; range 56 - 74%). DISCUSSION: Despite concerted efforts to increase the uptake of this intervention in many areas uptake remains poor. Bed nets reduce airflow, but have no influence on temperature and humidity. The discomfort associated with bed nets is likely to be most intolerable during the hottest and most humid period of the year, which frequently coincides with the peak of malaria vector densities and the force of pathogen transmission. CONCLUSIONS: These observations suggest thermal discomfort is a factor limiting bed net use and open a range of architectural possibilities to overcome this limitation.


Asunto(s)
Contaminación del Aire Interior , Vivienda , Control de Mosquitos/métodos , Mosquiteros/estadística & datos numéricos , Movimientos del Aire , Gambia , Humanos , Humedad , Filipinas , Tanzanía , Temperatura , Tailandia
16.
Malar J ; 10: 289, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21975087

RESUMEN

BACKGROUND: Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. METHODOLOGY: Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (-700 km away) as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. RESULTS: High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km2 of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (FST = 0.066) was higher than that of the well-known M and S forms of An. gambiae s. s. in West and Central Africa (FST = 0.035), suggesting that these populations are maintained by some level of reproductive isolation. CONCLUSION: It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The impact of the observed An. arabiensis substructure to the prospects for new vector control approaches is discussed.


Asunto(s)
Anopheles/clasificación , Anopheles/genética , Enfermedades Endémicas , Variación Genética , Malaria/epidemiología , Animales , Femenino , Genética de Población , Humanos , Repeticiones de Microsatélite , Tanzanía/epidemiología
17.
J Med Entomol ; 48(2): 305-13, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21485366

RESUMEN

Mosquito resistance to chemical insecticides is considered a serious threat for the sustainable use of contemporary malaria vector control methods. Fungal entomopathogens show potential as alternative biological control agents against (insecticide-resistant) anophelines. This study was designed to test whether the fungus, Beauveria bassiana, could be delivered to mosquitoes on netting materials that might be used in house screens, such as eave curtains. Tests were conducted to determine effects of formulation, application method, netting material, and nature of mosquito contact. Beauveria had a twice as high impact on Anopheles gambiae s.s. longevity when suspended in Shellsol solvent compared with Ondina oil (HR = 2.12, 95% confidence interval = 1.83-2.60, P < 0.001), and was significantly more infective when applied through spraying than dipping. Polyester and cotton bednets were the most effective substrates for mosquito infections, with highest spore viability on cotton nets. Whereas fungal impact was highest in mosquitoes that had passed through large-meshed impregnated nets, overall efficacy was equal between small- and large-meshed nets, with < or = 30-min spore contact killing >90% of mosquitoes within 10 d. Results indicate that the use of fungal spores dissolved in Shellsol and sprayed on small-meshed cotton eave curtain nets would be the most promising option for field implementation. Biological control with fungus-impregnated eave curtains could provide a means to target host-seeking mosquitoes upon house entry, and has potential for use in integrated vector management strategies, in combination with chemical vector control measures, to supplement malaria control in areas with high levels of insecticide resistance.


Asunto(s)
Anopheles/microbiología , Beauveria/fisiología , Insectos Vectores/microbiología , Malaria/transmisión , Control de Mosquitos/métodos , Animales , Femenino , Interacciones Huésped-Patógeno , Mosquiteros/microbiología , Factores de Tiempo
18.
Proc Biol Sci ; 278(1721): 3142-51, 2011 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-21389034

RESUMEN

Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAIC(c) support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness.


Asunto(s)
Anopheles/fisiología , Animales , Tamaño Corporal , Femenino , Densidad de Población , Dinámica Poblacional , Lluvia , Tanzanía
19.
Malar J ; 10: 24, 2011 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-21288359

RESUMEN

BACKGROUND: Insecticide-resistant mosquitoes are compromising the ability of current mosquito control tools to control malaria vectors. A proposed new approach for mosquito control is to use entomopathogenic fungi. These fungi have been shown to be lethal to both insecticide-susceptible and insecticide-resistant mosquitoes under laboratory conditions. The goal of this study was to see whether entomopathogenic fungi could be used to infect insecticide-resistant malaria vectors under field conditions, and to see whether the virulence and viability of the fungal conidia decreased after exposure to ambient African field conditions. METHODS: This study used the fungus Beauveria bassiana to infect the insecticide-resistant malaria vector Anopheles gambiae s.s (Diptera: Culicidae) VKPER laboratory colony strain. Fungal conidia were applied to polyester netting and kept under West African field conditions for varying periods of time. The virulence of the fungal-treated netting was tested 1, 3 and 5 days after net application by exposing An. gambiae s.s. VKPER mosquitoes in WHO cone bioassays carried out under field conditions. In addition, the viability of B. bassiana conidia was measured after up to 20 days exposure to field conditions. RESULTS: The results show that B. bassiana infection caused significantly increased mortality with the daily risk of dying being increased by 2.5 × for the fungus-exposed mosquitoes compared to the control mosquitoes. However, the virulence of the B. bassiana conidia decreased with increasing time spent exposed to the field conditions, the older the treatment on the net, the lower the fungus-induced mortality rate. This is likely to be due to the climate because laboratory trials found no such decline within the same trial time period. Conidial viability also decreased with increasing exposure to the net and natural abiotic environmental conditions. After 20 days field exposure the conidial viability was 30%, but the viability of control conidia not exposed to the net or field conditions was 79%. CONCLUSIONS: This work shows promise for the use of B. bassiana fungal conidia against insecticide-resistant mosquitoes in the field, but further work is required to examine the role of environmental conditions on fungal virulence and viability with a view to eventually making the fungal conidia delivery system more able to withstand the ambient African climate.


Asunto(s)
Anopheles/microbiología , Beauveria/crecimiento & desarrollo , Beauveria/patogenicidad , Control de Mosquitos/métodos , Control Biológico de Vectores/métodos , Animales , Viabilidad Microbiana , Mosquiteros/microbiología , Análisis de Supervivencia
20.
Parasitol Res ; 108(2): 317-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20872014

RESUMEN

Physiological characteristics of insects can influence their susceptibility to fungal infection of which age and nutritional status are among the most important. An understanding of host-pathogen interaction with respect to these physiological characteristics of the host is essential if we are to develop fungal formulations capable of reducing malaria transmission under field conditions. Here, two independent bioassays were conducted to study the effect of age and blood-feeding status on fungal infection and survival of Anopheles gambiae s.s. Giles. Mosquitoes were exposed to 2 × 10(10) conidia m(-2) of oil-formulated Metarhizium anisopliae ICIPE-30 and of Beauveria bassiana I93-825, respectively, and their survival was monitored daily. Three age groups of mosquitoes were exposed, 2-4, 5-8, and 9-12 days since emergence. Five groups of different feeding status were exposed: non-blood-fed, 3, 12, 36, and 72 h post-blood feeding. Fungal infection reduced the survival of mosquitoes regardless of their age and blood-feeding status. Although older mosquitoes died relatively earlier than younger ones, age did not tend to affect mosquito susceptibility to fungal infection. Non-blood-fed mosquitoes were more susceptible to fungus infection compared to all categories of blood-fed mosquitoes, except for those exposed to B. bassiana 72 h post-blood feeding. In conclusion, formulations of M. anisopliae and B. bassiana can equally affect mosquitoes of different age classes, with them being relatively more susceptible to fungus infection when non-blood-fed.


Asunto(s)
Anopheles/microbiología , Beauveria/patogenicidad , Metarhizium/patogenicidad , Control Biológico de Vectores/métodos , Envejecimiento/inmunología , Animales , Anopheles/inmunología , Beauveria/inmunología , Susceptibilidad a Enfermedades/inmunología , Conducta Alimentaria/fisiología , Femenino , Interacciones Huésped-Patógeno , Insectos Vectores/microbiología , Longevidad , Metarhizium/inmunología , Esporas Fúngicas/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA