Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 15(9): e0238126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32915794

RESUMEN

The blacklegged tick, Ixodes scapularis, is established in several regions of Ontario, Canada, and continues to spread into new geographic areas across the province at a rapid rate. This poses a significant public health risk since I. scapularis transmits the Lyme disease-causing bacterium, Borrelia burgdorferi, and other pathogens of potential public health concern. The objective of this study was to develop species distribution models for I. scapularis and B. burgdorferi to predict and compare the potential distributions of the tick vector and the Lyme disease pathogen as well as the ecological factors most important for species establishment. Ticks were collected via tick dragging at 120 sites across southern, central, and eastern Ontario between 2015 and 2018 and tested for tick-borne pathogens. A maximum entropy (Maxent) approach was used to model the potential distributions of I. scapularis and B. burgdorferi. Two independent datasets derived from tick dragging at 25 new sites in 2019 and ticks submitted by the public to local health units between 2015 and 2017 were used to validate the predictive accuracy of the models. The model for I. scapularis showed high suitability for blacklegged ticks in eastern Ontario and some regions along the shorelines of the Great Lakes, and moderate suitability near Algonquin Provincial Park and the Georgian Bay with good predictive accuracy (tick dragging 2019: AUC = 0.898; ticks from public: AUC = 0.727). The model for B. burgdorferi showed a similar predicted distribution but was more constrained to eastern Ontario, particularly between Ottawa and Kingston, and along Lake Ontario, with similarly good predictive accuracy (tick dragging 2019: AUC = 0.958; ticks from public: AUC = 0.863. The ecological variables most important for predicting the distributions of I. scapularis and B. burgdorferi included elevation, distance to deciduous and coniferous forest, proportions of agricultural land, water, and infrastructure, mean summer/spring temperature, and cumulative annual degree days above 0°C. Our study presents a novel application of species distribution modelling for I. scapularis and B. burgdorferi in Ontario, Canada, and provides an up to date projection of their potential distributions for public health knowledge users.


Asunto(s)
Borrelia burgdorferi/aislamiento & purificación , Ixodes/microbiología , Modelos Estadísticos , Garrapatas/microbiología , Animales , Área Bajo la Curva , Ecosistema , Humanos , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/patología , Ontario , Curva ROC
2.
Sensors (Basel) ; 18(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486369

RESUMEN

Airborne Lidar Bathymetry (ALB) is an advanced and effective technology for mapping water bodies and measuring water depth in relatively shallow inland and coastal zones. The concept of using light beams to detect and traverse water bodies has been around since the 1960s; however, its popularity has increased significantly in recent years with the advent of relatively affordable hardware, supplemented with potent software applications to process and analyze resulting data. To achieve the most accurate final product, which is usually a digital elevation model (DEM) of the bottom of a water body, various quality-control (QC) measures are applied during and after an airborne mission. River surveys, in particular, present various challenges, and quantifying the quality of the end product requires supplemental surveys and careful analysis of all data sets. In this article, we discuss a recent ALB survey of the Frio River in Texas and summarize the findings of all QC measures conducted. We conclude the article with suggestions for successful ALB deployments at similar survey locations.

3.
Environ Int ; 109: 42-52, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28934628

RESUMEN

Mortality attributable to extreme hot weather is a growing concern in many urban environments, and spatial heat vulnerability indexes are often used to identify areas at relatively higher and lower risk. Three indexes were developed for greater Vancouver, Canada using a pool of 20 potentially predictive variables categorized to reflect social vulnerability, population density, temperature exposure, and urban form. One variable was chosen from each category: an existing deprivation index, senior population density, apparent temperature, and road density, respectively. The three indexes were constructed from these variables using (1) unweighted, (2) weighted, and (3) data-driven Heat Exposure Integrated Deprivation Index (HEIDI) approaches. The performance of each index was assessed using mortality data from 1998-2014, and the maps were compared with respect to spatial patterns identified. The population-weighted spatial correlation between the three indexes ranged from 0.68-0.89. The HEIDI approach produced a graduated map of vulnerability, whereas the other approaches primarily identified areas of highest risk. All indexes performed best under extreme temperatures, but HEIDI was more useful at lower thresholds. Each of the indexes in isolation provides valuable information for public health protection, but combining the HEIDI approach with unweighted and weighted methods provides richer information about areas most vulnerable to heat.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Calor Extremo , Características de la Residencia , Colombia Británica , Cambio Climático , Humanos , Modelos Estadísticos , Mortalidad , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...