Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(1): e0262167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051217

RESUMEN

Listeria monocytogenes has been implicated in several ready-to-eat (RTE) foodborne outbreaks, due in part to its ability to survive under refrigerated conditions. Thus, the objective of this study was to evaluate the effects of sodium bisulfate (SBS), sodium lactate (SL), and their combination as short-duration antimicrobial dips (10-s) on L. monocytogenes and the microbiome of inoculated organic frankfurters (8 Log10 CFU/g). Frankfurters were treated with tap water (TW), SBS0.39%, SBS0.78%, SL0.78%, SL1.56%, SBS+SL0.39%, SBS+SL0.78%. In addition, frankfurters were treated with frankfurter solution water (HDW)+SBS0.78%, HDW+SL1.56%, and HDW+SBS+SL0.78%. After treatment, frankfurters were vacuum packaged and stored at 4°C. Bacterial enumeration and 16S rDNA sequencing occurred on d 0, 7, 14, 21. Counts were Log10 transformed and calculated as growth potential from d 0 to d 7, 14, and 21. Data were analyzed in R using mixed-effects model and One-Way ANOVA (by day) with differences separated using Tukey's HSD at P ≤ 0.05. The 16S rDNA was sequenced on an Illumina MiSeq and analyzed in Qiime2-2018.8 with significance at P ≤ 0.05 and Q ≤ 0.05 for main and pairwise effects. An interaction of treatment and time was observed among the microbiological plate data with all experimental treatments reducing the growth potential of Listeria across time (P < 0.0001). Efficacy of treatments was inconsistent across time; however, on d 21, SBS0.39% treated franks had the lowest growth potential compared to the control. Among diversity metrics, time had no effect on the microbiota (P > 0.05), but treatment did (P < 0.05). Thus, the treatments potentially promoted a stable microbiota across time. Using ANCOM, Listeria was the only significantly different taxa at the genus level (P < 0.05, W = 52). Therefore, the results suggest incorporating SBS over SL as an alternative antimicrobial for the control of L. monocytogenes in organic frankfurters without negatively impacting the microbiota. However, further research using multiple L. monocytogenes strains will need to be utilized in order to determine the scope of SBS use in the production of RTE meat.


Asunto(s)
Antiinfecciosos/farmacología , Almacenamiento de Alimentos , Listeria monocytogenes/efectos de los fármacos , Lactato de Sodio/farmacología , Sulfatos/farmacología , Animales , Bovinos , Microbiología de Alimentos , Concentración de Iones de Hidrógeno , Listeria monocytogenes/genética , Productos de la Carne/microbiología , Microbiota/efectos de los fármacos , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Refrigeración , Factores de Tiempo
2.
Food Microbiol ; 92: 103595, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950137

RESUMEN

During fresh apple packing, wash water in the dump tank and flume systems is reused during daily production, resulting in high levels of organic matter in the wash water. This study evaluated the antimicrobial efficacy of sodium acid sulfate (SAS), a Generally Recognized as Safe compound, against Listeria monocytogenes on fresh apples in a water system with high organic load. SAS at 1.0% reduced L. monocytogenes population in water with 1000 ppm chemical oxygen demand (COD) by more than 5.0 Log10 CFU/ml in 5 min, 2.0-3.0% SAS reduced L. monocytogenes to undetectable levels (10 CFU/ml) within 2 min regardless of organic levels. When applied on apples, a 2-min wash with SAS at 1.0, 1.5, 2.0, and 3.0% reduced L. monocytogenes by ~1.3, 1.9, 2.3, and 3.0 Log10 CFU/apple in clean water, respectively. High organic load in wash water up to 4000 ppm COD had no impact on the bactericidal effect of SAS against L. monocytogenes on fresh apples regardless of SAS concentrations. Shortening the contact time from 2 min to 30 s significantly reduced the antimicrobial efficacy of 25 ppm chlorine and 1.0-2.0% SAS but not that of 3.0% SAS. In addition, SAS at 1.0% demonstrated a better efficacy than 25 ppm chlorine in reducing fruit-to-water cross-contamination regardless of organic matter. SAS also showed a comparable efficacy as 25 ppm chlorine in reducing fruit-to-fruit cross-contamination in water with organic matter. The collective data indicate that SAS, as an enviroment-friendly compound, has the potential to be used as an alternative antimicrobial washing aid in dump tank process water intervention in apple packing facilities.


Asunto(s)
Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Agua Dulce/microbiología , Listeria monocytogenes/efectos de los fármacos , Malus/microbiología , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Conservación de Alimentos/instrumentación , Agua Dulce/análisis , Frutas/microbiología , Listeria monocytogenes/crecimiento & desarrollo
3.
Front Vet Sci ; 6: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30761312

RESUMEN

The presence of Salmonella spp. on poultry products is one of the leading causes of foodborne illness in the United States. Therefore, novel antimicrobial substances are being explored as potential interventions in poultry processing facilities. The objective of the current study was to evaluate the efficacy of varying concentrations of sodium bisulfate salt, SBS, alone or in combination with peracetic acid, PAA, in 15 s whole part dips. Ninety six drumsticks (4 replications, 8 treatments, 3 days) were inoculated separately in a 400 mL solution of nalidixic resistant (NA) Salmonella Enteritidis (107 CFU/mL) and allowed to adhere for 60 to 90 min at 4°C for a final concentration of 106 CFU/g. The experimental treatments included: a no treatment (control), and 15 s dips in 300 mL of tap water alone (TW) or with the addition of 1; 2; and 3% SBS; 1; 2; and 3% SBS+PAA. After treatment, drumsticks were stored at 4°C until microbial sampling was conducted. On d 0, l, and 3, drumsticks were rinsed in 150 mL of nBPW for 1 min, 100 µL of rinsate was serially diluted, spread plated on XLT4+NA (20 µg/mL), and incubated aerobically at 37°C for 24 h. Log-transformed counts were analyzed using a randomized complete block design (day) using One-Way ANOVA, polynomial contrasts, and pairwise comparisons with means being separated by Tukey's HSD with a significance level of P ≤ 0.05. A treatment by day interaction (P = 0.14071) was not substantial. Thus, the treatment effect was investigated separately by days. Over time, a linear trend was observed in S. Enteritidis concentration when SBS was increased (1 < 2 < 3%). The concentration of S. Enteritidis was different between 1% SBS and 1% SBS+PAA on d 0. However, the level of S. Enteritidis was not different among drumsticks treated in 2 and 3% SBS and 2 and 3% SBS+PAA across d 0, 1, 3. The application of 3% SBS alone or in combination with 200 ppm of PAA is capable of reducing the presence of Salmonella over a 3-d refrigeration period; potentially increasing the safety of poultry products for consumers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...