Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 6(1): fcae008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304004

RESUMEN

The 18 kDa translocator protein is a well-known biomarker of neuroinflammation, but also plays a role in homeostasis. PET with 18 kDa translocator protein radiotracers [11C]PBR28 in humans and [18F]GE180 in mice has demonstrated sex-dependent uptake patterns in the healthy brain, suggesting sex-dependent 18 kDa translocator protein expression, although humans and mice had differing results. This study aimed to assess whether the 18 kDa translocator protein PET radiotracer [18F]LW223 exhibited sexually dimorphic uptake in healthy murine brain and peripheral organs. Male and female C57Bl6/J mice (13.6 ± 5.4 weeks, 26.8 ± 5.4 g, mean ± SD) underwent 2 h PET scanning post-administration of [18F]LW223 (6.7 ± 3.6 MBq). Volume of interest and parametric analyses were performed using standard uptake values (90-120 min). Statistical differences were assessed by unpaired t-test or two-way ANOVA with Sidak's test (alpha = 0.05). The uptake of [18F]LW223 was significantly higher across multiple regions of the male mouse brain, with the most pronounced difference detected in hypothalamus (P < 0.0001). Males also exhibited significantly higher [18F]LW223 uptake in the heart when compared to females (P = 0.0107). Data support previous findings on sexually dimorphic 18 kDa translocator protein radiotracer uptake patterns in mice and highlight the need to conduct sex-controlled comparisons in 18 kDa translocator protein PET imaging studies.

2.
J Cereb Blood Flow Metab ; 44(3): 397-406, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37795635

RESUMEN

Neuroinflammation is associated with a number of brain diseases, making it a common feature of cerebral pathology. Among the best-known biomarkers for neuroinflammation in Positron Emission Tomography (PET) research is the 18 kDa translocator protein (TSPO). This study aims to investigate the binding kinetics of a novel TSPO PET radiotracer, [18F]LW223, in mice and specifically assess its volume of non-displaceable binding (VND) in brain as well as investigate the use of simplified analysis approaches for quantification of [18F]LW223 PET data. Adult male mice were injected with [18F]LW223 and varying concentrations of LW223 (0.003-0.55 mg/kg) to estimate VND of [18F]LW223. Dynamic PET imaging with arterial input function studies and radiometabolite studies were conducted. Simplified quantification methods, standard uptake values (SUV) and apparent volume of distribution (VTapp), were investigated. [18F]LW223 had low VND in the brain (<10% of total binding) and low radiometabolism (∼15-20%). The 2-tissue compartment model provided the best fit for [18F]LW223 PET data, although its correlation with SUV90-120min or VTapp allowed for [18F]LW223 brain PET data quantification in healthy animals while using simpler experimental and analytical approaches. [18F]LW223 has the required properties to become a successful TSPO PET radiotracer.


Asunto(s)
Enfermedades Neuroinflamatorias , Receptores de GABA , Masculino , Ratones , Animales , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas Portadoras/metabolismo
3.
Front Neurosci ; 16: 909762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937892

RESUMEN

A maternal high-fat diet affects offspring neurodevelopment with long-term consequences on their brain health and behavior. During the past three decades, obesity has rapidly increased in the whole human population worldwide, including women of reproductive age. It is known that maternal obesity caused by a high-fat diet may lead to neurodevelopmental disorders in their offspring, such as autism spectrum disorder, attention deficit hyperactivity disorder, anxiety, depression, and schizophrenia. A maternal high-fat diet can affect offspring neurodevelopment due to inflammatory activation of the maternal gut, adipose tissue, and placenta, mirrored by increased levels of pro-inflammatory cytokines in both maternal and fetal circulation. Furthermore, a maternal high fat diet causes gut microbial dysbiosis further contributing to increased inflammatory milieu during pregnancy and lactation, thus disturbing both prenatal and postnatal neurodevelopment of the offspring. In addition, global molecular and cellular changes in the offspring's brain may occur due to epigenetic modifications including the downregulation of brain-derived neurotrophic factor (BDNF) expression and the activation of the endocannabinoid system. These neurodevelopmental aberrations are reflected in behavioral deficits observed in animals, corresponding to behavioral phenotypes of certain neurodevelopmental disorders in humans. Here we reviewed recent findings from rodent models and from human studies to reveal potential mechanisms by which a maternal high-fat diet interferes with the neurodevelopment of the offspring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA