Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 5(5): e2001264, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34928087

RESUMEN

The bevel structure of organic multilayers produced by finely controlled Ar gas cluster ion beam sputtering preserves both the molecular distribution and chemical states. Nevertheless, there is still an important question of whether this method can be applicable to organic multilayer structures composed of complex or ambiguous interfaces used in real organic optoelectronic devices. Herein, various bevel structures are fabricated from different types of organic semiconductors using a solution-based deposition technique: complicatedly intermixed electron-donor and electron-acceptor bulk heterojunction structure, thin film structure with an internal donor-acceptor concentration gradient, and multi-layered structure with more than three layers. For these organic material combinations listed above, the bevel structure is fabricated with finely tuned Ar gas cluster ion beam sputtering. The location-dependent X-ray photoelectron spectroscopy (XPS) results obtained for each bevel structure exactly correspond to the XPS depth profiles. This result demonstrates that the bevel structure analysis is a powerful method to distinguish subtle differences in chemical component distributions and chemical states of organic semiconductors even with complex or ambiguous interfaces. Ultimately, due to its reliability as verified by this study, the proposed bevel structure analysis is expected to greatly expand other analytical techniques with a limited spatial or depth resolution.

2.
Small ; 17(52): e2102792, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636144

RESUMEN

Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.


Asunto(s)
Puntos Cuánticos , Luminiscencia , Sulfuros , Compuestos de Zinc
3.
ACS Appl Mater Interfaces ; 13(9): 11396-11402, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33480686

RESUMEN

Facile strategies in flexible transparent conductive electrode materials that can sustain their electrical conductivities under 1 mm-scale radius of curvature are required for wider applications such as foldable devices. We propose a rational design as well as a fabrication process for a silver nanowire-based transparent conductive electrode with low sheet resistance and high transmittance even after prolonged cyclic bending. The electrode is fabricated on a poly(ethylene terephthalate) film through the hybridization of silver nanowires with silver nanoparticles-anchored RuO2 nanosheets. This hybridization significantly improves the performance of the silver nanowire network under severe bending strain and creates an electrically percolative structure between silver nanowires and RuO2 nanosheets in the presence of anchored silver nanoparticles on the surface of RuO2 nanosheets. The resistance change of this hybrid transparent conductive electrode is 8.8% after 200,000 bending cycles at a curvature radius of 1 mm, making it feasible for use in foldable devices.

4.
J Phys Condens Matter ; 31(50): 50LT01, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31295738

RESUMEN

The widely-studied ferromagnetic van-der-Waals (vdW) metal Fe3GeTe2 has great promise for studies of quantum criticality in the 2D limit, but is limited by a relatively high Curie temperature in excess of 200 K. To help render the quantum critical point achievable in such a system within the reach of practically possible tuning methods, we have grown single crystals of a variant of (Fe,Co)3GeTe2 with useful physical properties for both this purpose and the wider study of low-dimensional magnetism and spin transport. (Fe,Co)3GeTe2 is found through x-ray diffraction and electron microscopy to have an equivalent crystal structure to Fe3GeTe2, with a random distribution of the cobalt dopant sites. It exhibits a sharp ferromagnetic transition at a value below 40 K, a stronger anisotropy and a coercive field ten times larger than that of Fe3GeTe2. The transport properties and specific heat show the electronic properties and strong correlations of Fe3GeTe2 to be near-unchanged in this doped material. We demonstrate that (Fe,Co)3GeTe2 can be cleanly exfoliated down to monolayer thickness. This unprecedented hard metallic vdW ferromagnet is a valuable new addition to the limited range of materials available for the study of 2D magnetism.

5.
Adv Sci (Weinh) ; 6(6): 1800843, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30937254

RESUMEN

Layered lithium transition-metal oxide materials, e.g., Li(Ni1- x - y Co x Mn y )O2 (NCM) and Li(Ni1- x - y Co x Al y )O2, are the most promising candidates for lithium-ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1-1 µm), called secondary and primary particles, respectively. The micrometer- to nanometer-sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so-called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low-angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so-called primary particle is renamed as primary-like particle. More importantly, the low-angle GBs between the smaller true primary particles cause the development of nanocracks within the primary-like particles of Ni-rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni-rich layered cathodes.

6.
ACS Appl Mater Interfaces ; 10(24): 20599-20610, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29889496

RESUMEN

For developing the industrially feasible Ni-rich layered oxide cathode with extended cycle life, it is necessary to mitigate both the mechanical degradation due to intergranular cracking between primary particles and gas generation from the reaction between the electrolyte and residual Li in the cathode. To simultaneously resolve these two issues, we herein propose a simple but novel method to reinforce the primary particles in LiNi0.91Co0.06Mn0.03O2 by providing a Li-reactive material, whose spinel interphase is coherent with the surface of the cathode. The modified structure significantly outperforms analogous bare samples: they conserve more than 90% of the initial capacity after 50 cycles and also exhibit a greater rate capability. By tracking the same particle location during cycling, we confirmed that the current method significantly reduces crack generation because the provided coating material can penetrate inside the grain boundary of the secondary particle and help maintain the volume of the primary particle. Finally, first-principles calculations were implemented to determine the role of this spinel material, i.e., having intrinsically isotropic lattice parameters, superior mechanical properties, and only a small volume change during delithiation. We believe that the proposed method is straightforward and cost-effective; hence, it is directly applicable for the mass production of Ni-rich cathode material to enable its commercialization.

7.
Nanotechnology ; 29(1): 015404, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29115283

RESUMEN

The electrical conductivity and Seebeck coefficient of RuO2 nanosheets are enhanced by metal nanoparticle doping using Ag-acetate solutions. In this study, RuO2 monolayer and bilayer nanosheets exfoliated from layered alkali metal ruthenates are transferred to Si substrates for device fabrication, and the temperature dependence of their conductivity and Seebeck coefficients is investigated. For pristine RuO2 nanosheets, the sign of the Seebeck coefficient changes with temperature from 350-450 K. This indicates that the dominant type of charge carrier is dependent on the temperature, and the RuO2 nanosheets show ambipolar carrier transport behavior. By contrast, the sign of the Seebeck coefficient for Ag nanoparticle-doped RuO2 nanosheets does not change with temperature, indicating that the extra charge carriers from metal nanoparticles promote n-type semiconductor behavior.

8.
Sci Rep ; 7(1): 7317, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28779081

RESUMEN

Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi0.5Sb1.5Te3 or n-type Bi2Te2.7Se0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.

9.
Nanoscale ; 9(21): 7104-7113, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28513639

RESUMEN

The enhancement in electrical transport properties of exfoliated individual RuO2 NSs was systemically investigated for their application in flexible electronics and optoelectronics. Decoration of Ag NPs on the surface of the RuO2 NSs provides donor electrons and dramatically increases the electrical conductivity of the monolayer RuO2 NSs by up to 3700%. The n-type doping behavior was confirmed via Hall measurement analysis of the doped RuO2 NSs. The layer number- and temperature-dependence of the conductivity were also investigated. Moreover, carrier concentration and mobility were obtained from Hall measurements, indicating that the undoped RuO2 NSs had ambipolar transport and semi-metallic characteristics. Moreover, the Ag-doped RuO2 NS multilayer films on polycarbonate substrates were demonstrated by the Langmuir-Blodgett assembly methods, showing one-third reduction in the sheet resistance and extraordinarily high bending stability that the change in the resistance was less than 1% over 50 000 cycles.

10.
Sci Rep ; 7: 43561, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252013

RESUMEN

We demonstrated that a flat band voltage (VFB) shift could be controlled in TiN/(LaO or ZrO)/SiO2 stack structures. The VFB shift described in term of metal diffusion into the TiN film and silicate formation in the inserted (LaO or ZrO)/SiO2 interface layer. The metal doping and silicate formation confirmed by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) line profiling, respectively. The direct work function measurement technique allowed us to make direct estimate of a variety of flat band voltages (VFB). As a function of composition ratio of La or Zr to Ti in the region of a TiN/(LaO or ZrO)/SiO2/Si stack, direct work function modulation driven by La and Zr doping was confirmed with the work functions obtained from the cutoff value of secondary electron emission by auger electron spectroscopy (AES). We also suggested an analytical method to determine the interface dipole via work function depth profiling.

11.
Nat Commun ; 7: 12725, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586841

RESUMEN

Concepts of non-volatile memory to replace conventional flash memory have suffered from low material reliability and high off-state current, and the use of a thick, rigid blocking oxide layer in flash memory further restricts vertical scale-up. Here, we report a two-terminal floating gate memory, tunnelling random access memory fabricated by a monolayer MoS2/h-BN/monolayer graphene vertical stack. Our device uses a two-terminal electrode for current flow in the MoS2 channel and simultaneously for charging and discharging the graphene floating gate through the h-BN tunnelling barrier. By effective charge tunnelling through crystalline h-BN layer and storing charges in graphene layer, our memory device demonstrates an ultimately low off-state current of 10(-14) A, leading to ultrahigh on/off ratio over 10(9), about ∼10(3) times higher than other two-terminal memories. Furthermore, the absence of thick, rigid blocking oxides enables high stretchability (>19%) which is useful for soft electronics.

12.
Opt Lett ; 39(17): 5062-5, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25166074

RESUMEN

We examined the ultrafast dynamics of photocarriers in nanocrystalline ZnOxNy thin films as a function of compositional variation using femtosecond differential transmittance spectroscopy. The relaxation dynamics of photogenerated carriers and electronic structures are strongly dependent on nitrogen concentration. Photocarriers of ZnOxNy films relax on two different time scales. Ultrafast relaxation over several picoseconds is observed for all chemical compositions. However, ZnO and oxygen-rich phases show slow relaxation (longer than several nanoseconds), whereas photocarriers of films with high nitrogen concentrations relax completely on subnanosecond time scales. These relaxation features may provide a persistent photocurrent-free and prompt photoresponsivity for ZnOxNy with high nitrogen concentrations, as opposed to ZnO for display applications.

13.
Opt Express ; 22 Suppl 3: A857-66, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24922392

RESUMEN

We discuss the influence of V-pits and their energy barrier, originating from its facets of (101¯1) planes, on the luminescence efficiency of InGaN LEDs. Experimental analysis using cathodoluminescence (CL) exhibits that thin facets of V-pits of InGaN quantum wells (QWs) appear to be effective in improving the emission intensity, preventing the injected carriers from recombining non-radiatively with threading dislocations (TDs). Our theoretical calculation based on the self-consistent approach with adopting k⋅p method reveals that higher V-pit energy barrier heights in InGaN QWs more efficiently suppress the non-radiative recombination at TDs, thus enhancing the internal quantum efficiency (IQE).

14.
Sci Rep ; 4: 4948, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24824778

RESUMEN

Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3-10 cm(2)/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm(2)/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm(2) V(-1) s(-1), the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices.

15.
Adv Mater ; 26(21): 3451-8, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24536023

RESUMEN

A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved.


Asunto(s)
Electrodos , Polímeros/química , Poliestirenos/química , Presión , Tiofenos/química , Monitores de Presión Sanguínea , Elasticidad , Elastómeros , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microtecnología/métodos , Monitoreo Fisiológico/instrumentación , Hojas de la Planta , Pulso Arterial/instrumentación , Piel , Estrés Mecánico
16.
Ultramicroscopy ; 107(8): 663-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17307292

RESUMEN

The actual temperature rise was measured during ion-milling process used in the transmission electron microscopy (TEM) sample preparation. Special probes were fabricated for the measurements, one with shielded, floating thermocouple mounted onto a 3mm grid to compute the thermal load at the sample, and the other, a bare probe with a polymer coating to measure the maximum temperature attained. The temperature measured in the most commonly used ion-milling system reached up to 295 degrees C when the typical milling conditions, 6keV ion-energy and an incident angle of 80 degrees, were used. Based on the temperature profiles that were obtained by the shielded probe, two unknown parameters, the amount of heat deposited by the energetic ions/neutrals to the sample and the thermal conductivities between the materials, were estimated and used to compute the temperature rise in commonly adopted materials. The calculation showed that the temperature of the glass sample reached more than 300 degrees C under typical ion-milling conditions. The calculated value was confirmed with the experimental result of the crystallization of an amorphous Si on the glass under the typical ion-milling condition, which gave the same extent as annealing at 350 degrees C.

17.
Ultramicroscopy ; 107(4-5): 368-73, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17088021

RESUMEN

Samples prepared using the focused ion beam (FIB) inevitably contain the surface damage induced by energetic Ga+ ions. An effective method of removing the surface damage is demonstrated using a plasma cleaner, a device which is widely used to minimize the surface contamination in scanning transmission electron microscopy (STEM). Surface bombardment with low-energy Ar+ ions was induced by biasing the sample immersed in the plasma source, so as to etch off the surface materials. The etch rates of SiO2, measured with a bias voltage of 100-300 V, were found to vary linearly with both the time and bias and were able to be controlled from 1.4 to 9 nm/min. The removal of the Ga residue was confirmed using energy dispersive spectroscopy (EDS) after the plasma processing of the FIB-prepared sample. When the FIB-prepared sample was processed via plasma etching for 10 min with a bias of 150 V, the surface Ga damage was completely removed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...