Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371812

RESUMEN

Identifying and treating tumors early is the key to secondary prevention in cancer control. At present, prevention of oral cancer is still challenging because the molecular drivers responsible for malignant transformation of the 11 clinically defined oral potentially malignant disorders are still unknown. In this review, we focused on studies that elucidate the epigenetic alterations demarcating malignant and nonmalignant epigenomes and prioritized findings from clinical samples. Head and neck included, the genomes of many cancer types are largely hypomethylated and accompanied by focal hypermethylation on certain specific regions. We revisited prior studies that demonstrated that sufficient uptake of folate, the primary dietary methyl donor, is associated with oral cancer reduction. As epigenetically driven phenotypic plasticity, a newly recognized hallmark of cancer, has been linked to tumor initiation, cell fate determination, and drug resistance, we discussed prior findings that might be associated with this hallmark, including gene clusters (11q13.3, 19q13.43, 20q11.2, 22q11-13) with great potential for oral cancer biomarkers, and successful examples in screening early-stage nasopharyngeal carcinoma. Although one-size-fits-all approaches have been shown to be ineffective in most cancer therapies, the rapid development of epigenome sequencing methods raises the possibility that this nonmutagenic approach may be an exception. Only time will tell.

2.
Front Cell Dev Biol ; 10: 821224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721518

RESUMEN

There are few well-characterized syngeneic murine models for hepatocellular carcinoma (HCC), which limits immunological studies and the development of immunotherapies for HCC. We previously established an oncogene-induced spontaneous HCC mouse model based on transposon-mediated oncogene (AKT and NRASV12) insertion into the genome of hepatocytes to induce tumorigenesis. Two tumor clones with different levels of lipid droplets (LDs) showed similar in vitro growth but distinctive in vivo phenotypes, including divergent proliferative capability and varying induction of myeloid-derived suppressor cells (MDSCs). The two clones showed distinct gene expression related to lipid metabolism, glycolysis, and cancer stemness. Endogenous fatty acid (FA) synthesis and exogenous monounsaturated fatty acid (MUFA) consumption promoted both tumor proliferation and cancer stemness, and upregulated c-Myc in the HCC cell lines. Moreover, the LDhi HCC cell line expressed a higher level of type II IL-4 receptor, which promoted tumor proliferation through binding IL-4 or IL-13. The chromosomal DNA of two tumor clones, NHRI-8-B4 (LDhi) and NHRI-1-E4 (LDlo) showed five identical AKT insertion sites in chromosomes 9, 10, 13, 16 and 18 and two NRAS integration sites in chromosomes 2 and 3. Herein, we describe two novel HCC cell lines with distinct features of lipid metabolism related to cancer stemness and differential interplay with the immune system, and present this syngeneic HCC mouse model as a practical tool for the study of cancer stemness and discovery of new therapies targeting liver cancers.

3.
Front Oncol ; 11: 769665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869001

RESUMEN

BACKGROUND: Partial epithelial-mesenchymal transition (p-EMT) is a distinct clinicopathological feature prevalent in oral cavity tumors of The Cancer Genome Atlas. Located at the invasion front, p-EMT cells require additional support from the tumor stroma for collective cell migration, including track clearing, extracellular matrix remodeling and immune evasion. The pathological roles of otherwise nonmalignant cancer-associated fibroblasts (CAFs) in cancer progression are emerging. METHODS: Gene set enrichment analysis was used to reveal differentially enriched genes and molecular pathways in OC3 and TW2.6 xenograft tissues, representing mesenchymal and p-EMT tumors, respectively. R packages of genomic data science were executed for statistical evaluations and data visualization. Immunohistochemistry and Alcian blue staining were conducted to validate the bioinformatic results. Univariate and multivariate Cox proportional hazards models were performed to identify covariates significantly associated with overall survival in clinical datasets. Kaplan-Meier curves of estimated overall survival were compared for statistical difference using the log-rank test. RESULTS: Compared to mesenchymal OC3 cells, tumor stroma derived from p-EMT TW2.6 cells was significantly enriched in microvessel density, tumor-excluded macrophages, inflammatory CAFs, and extracellular hyaluronan deposition. By translating these results to clinical transcriptomic datasets of oral cancer specimens, including the Puram single-cell RNA-seq cohort comprising ~6000 cells, we identified the expression of stromal TGFBI and HYAL1 as independent poor and protective biomarkers, respectively, for 40 Taiwanese oral cancer tissues that were all derived from betel quid users. In The Cancer Genome Atlas, TGFBI was a poor marker not only for head and neck cancer but also for additional six cancer types and HYAL1 was a good indicator for four tumor cohorts, suggesting common stromal effects existing in different cancer types. CONCLUSIONS: As the tumor stroma coevolves with cancer progression, the cellular origins of molecular markers identified from conventional whole tissue mRNA-based analyses should be cautiously interpreted. By incorporating disease-matched xenograft tissue and single-cell RNA-seq results, we suggested that TGFBI and HYAL1, primarily expressed by stromal CAFs and endothelial cells, respectively, could serve as robust prognostic biomarkers for oral cancer control.

4.
Cancers (Basel) ; 12(7)2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605311

RESUMEN

In many solid tumors, tissue of the mesenchymal subtype is frequently associated with epithelial-mesenchymal transition (EMT), strong stromal infiltration, and poor prognosis. Emerging evidence from tumor ecosystem studies has revealed that the two main components of tumor stroma, namely, infiltrated immune cells and cancer-associated fibroblasts (CAFs), also express certain typical EMT genes and are not distinguishable from intrinsic tumor EMT, where bulk tissue is concerned. Transcriptomic analysis of xenograft tissues provides a unique advantage in dissecting genes of tumor (human) or stroma (murine) origins. By transcriptomic analysis of xenograft tissues, we found that oral squamous cell carcinoma (OSCC) tumor cells with a high EMT score, the computed mesenchymal likelihood based on the expression signature of canonical EMT markers, are associated with elevated stromal contents featured with fibronectin 1 (Fn1) and transforming growth factor-ß (Tgfß) axis gene expression. In conjugation with meta-analysis of these genes in clinical OSCC datasets, we further extracted a four-gene index, comprising FN1, TGFB2, TGFBR2, and TGFBI, as an indicator of CAF abundance. The CAF index is more powerful than the EMT score in predicting survival outcomes, not only for oral cancer but also for the cancer genome atlas (TCGA) pan-cancer cohort comprising 9356 patients from 32 cancer subtypes. Collectively, our results suggest that a further distinction and integration of the EMT score with the CAF index will enhance prognosis prediction, thus paving the way for curative medicine in clinical oncology.

5.
Cancers (Basel) ; 12(4)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244515

RESUMEN

The discoidin domain receptor-1 (DDR1) is a non-integrin collagen receptor recently implicated in the collective cell migration of other cancer types. Previously, we identified an elevated expression of DDR1 in oral squamous cell carcinoma (OSCC) cells. Through the data mining of a microarray dataset composed of matched tumor-normal tissues from forty OSCC patients, we distilled overexpressed genes statistically associated with angiolymphatic invasion, including DDR1, COL4A5, COL4A6 and PDPN. Dual immunohistochemical staining further confirmed the spatial locations of DDR1 and PDPN in OSCC tissues indicative of collective cancer cell invasion. An elevated DDR1 expression at both the transcription and protein level was observed by treating keratinocytes with collagen of fibrillar or basement membrane types. In addition, inhibition of DDR1 kinase activity in OSCC TW2.6 cells disrupted cell cohesiveness in a 2D culture, reduced spheroid invasion in a collagen gel matrix, and suppressed angiolymphatic invasion in xenograft tissues. Taken together, these results suggest that collagen deposition in the affected tissues followed by DDR1 overexpression could be central to OSCC tumor growth and angiolymphatic invasion. Thus, DDR1 inhibitors are potential therapeutic compounds in restraining oral cancer, which has not been previously explored.

6.
Cancers (Basel) ; 11(11)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731581

RESUMEN

Nasopharyngeal carcinoma (NPC) is a unique malignancy derived from the epithelium of the nasopharynx. Despite great advances in the development of radiotherapy and chemotherapy, relapse and metastasis in NPC patients remain major causes of mortality. Evidence accumulated over recent years indicates that Epstein-Barr virus (EBV) lytic replication plays an important role in the pathogenesis of NPC and inhibition of EBV reactivation is now being considered as a goal for the therapy of EBV-associated cancers. With this in mind, a panel of dietary compounds was screened and emodin was found to have potential anti-EBV activity. Through Western blotting, immunofluorescence, and flow cytometric analysis, we show that emodin inhibits the expression of EBV lytic proteins and blocks virion production in EBV- positive epithelial cell lines. In investigating the underlying mechanism, reporter assays indicated that emodin represses Zta promoter (Zp) and Rta promoter (Rp) activities, triggered by various inducers. Mapping of the Zp construct reveals that the SP1 binding region is important for emodin-triggered repression and emodin is shown to be able to inhibit SP1 expression, suggesting that it likely inhibits EBV reactivation by suppression of SP1 expression. Moreover, we also show that emodin inhibits the tumorigenic properties induced by repeated EBV reactivation, including micronucleus formation, cell proliferation, migration, and matrigel invasiveness. Emodin administration also represses the tumor growth in mice which is induced by EBV activation. Taken together, our results provide a potential chemopreventive agent in restricting EBV reactivation and NPC recurrence.

7.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28490592

RESUMEN

Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC, CCND1, and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC, CCND1, and JUN, which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF.IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV) immediate-early protein, Rta, known to be a transcriptional activator, can also function as a transcriptional repressor. Via enriching CpG methylation and decreasing CTCF reloading, Rta binding efficiently shut down the expression of MYC, CCND1, and JUN, thus impeding cell cycle progression. Rta-mediated disruption of CTCF binding was also detected in the latency/reactivation control regions of the EBV genome, and this in turn led to viral lytic cycle progression. As emerging evidence indicates that a methylated EBV genome is a preferable substrate for EBV Zta, the other immediate-early protein, our results suggest a mechanistic link in understanding the molecular processes of viral latent-lytic switch.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Activación Viral , Factor de Unión a CCCTC , Regulación hacia Abajo , Interacciones Huésped-Patógeno , Transcripción Genética
8.
Front Microbiol ; 3: 60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22371709

RESUMEN

The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal ((527)KKRK(530)) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that (634)SPSP(637) motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.

9.
J Biomed Sci ; 19: 12, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22300411

RESUMEN

BACKGROUND: The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored. METHODS: By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA. RESULTS: We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes. CONCLUSIONS: KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Proteínas Inmediatas-Precoces/genética , N-Acetilglucosaminiltransferasas/genética , Transactivadores/genética , Acilación , Alanina/química , Sustitución de Aminoácidos , Western Blotting , Cromatografía de Gases y Espectrometría de Masas , Células HEK293 , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Inmunoprecipitación , N-Acetilglucosaminiltransferasas/metabolismo , Oligopéptidos , Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , ARN Interferente Pequeño/metabolismo , Espectrometría de Masas en Tándem , Treonina/química , Transactivadores/metabolismo
10.
PLoS One ; 6(3): e17809, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21423768

RESUMEN

Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-ß-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.


Asunto(s)
Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Proteínas Virales/metabolismo , Activación Viral/fisiología , Carcinoma , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Doxiciclina/farmacología , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación Viral de la Expresión Génica/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/efectos de los fármacos , Herpesvirus Humano 8/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Factores de Tiempo , Activación Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
Cell Cycle ; 8(1): 58-65, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19098430

RESUMEN

Epstein-Barr Virus (EBV) replication and transcription activator (Rta/BRLF1) is an immediate-early transcription factor that controls the conversion of the latent viral genome into one undergoing lytic replication. By using a doxycycline-inducible expression system, the present study demonstrates that EBV Rta efficiently elicits growth arrest in the human epithelial cell line HEK293. In cells arrested by EBV Rta, the expression of p21 (CDKN1A), p27 (CDKN1B) and cyclin E were increased. In contrast, the levels of cyclin D1, CDK4 and CDK6 were sharply decreased. Activation of the host cell DNA damage response (DDR), indicated by the increasing phosphorylation of H2AX and p53 Ser15, was observed on day 3 and day 5 after EBV Rta expression, respectively. Finally, EBV Rta arrested cells exhibited strong senescence-associated beta-galactosidase staining on day 10 after doxycycline induction. Together, these results indicate that, in addition to triggering viral lytic replication in epithelial cells, EBV Rta concurrently initiates a cellular senescence program that was previously undocumented. This finding, showing Rta may be centrally involved in inducing a host cell state amenable to efficient viral reproduction, in addition to its previously characterized regulation of viral transcription, provides new perspectives in understanding EBV pathogenesis.


Asunto(s)
Senescencia Celular , Células Epiteliales/citología , Herpesvirus Humano 4/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Transactivadores/metabolismo , Replicación Viral/fisiología , Línea Celular , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Doxiciclina/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fase G1/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Humanos , Cinética , Luciferasas/metabolismo , Nasofaringe/citología , Estabilidad Proteica/efectos de los fármacos , Tetraciclina/farmacología , Replicación Viral/efectos de los fármacos , beta-Galactosidasa/metabolismo
12.
J Cell Biochem ; 93(5): 917-28, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15389871

RESUMEN

Recent studies have shown that statins, the most potent inhibitors of 3-hydroxy-2-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulate bone formation in vitro and in rodents by activating the expression of bone morphogenetic protein-2 (BMP-2), one of the most critical osteoblast differentiation-inducing factors. However, the effect of statins on mesenchymal stem cells (MSCs) is yet to be reported. The purpose of this study is to investigate the influence of fluvastatin, lovastatin, and pravastatin, three commonly prescribed lipid-lowering agents, on the proliferation and differentiation of human MSCs. To our surprise, even though fluvastatin and lovastatin effectively suppressed the growth of human MSCs, a neuroglia rather than osteoblast-like morphology was observed after treatment. Interestingly, such morphological change was inhibited by the co-addition of geranylgeranyl pyrophosphate (GGPP). Immunofluorescence staining with antibodies against neuron-, astrocyte-, as well as oligodendrocyte-specific markers confirmed the neuroglial identity of the differentiated cells. However, BMP-2 is unlikely to play a positive role in neuroglial differentiation of MSCs since its expression was down-regulated in fluvastatin-treated cells. Taken together, our results suggest that fluvastatin and lovastatin induce neuroglial differentiation of human MSCs and that these cholesterol-lowering agents might be used in conjunction with MSC transplantation in the future for treating neurological disorders and injuries.


Asunto(s)
Diferenciación Celular/fisiología , Ácidos Grasos Monoinsaturados/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Indoles/farmacología , Lovastatina/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Neuroglía/fisiología , Pravastatina/farmacología , Antineoplásicos/farmacología , Biomarcadores , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Proliferación Celular , Forma de la Célula , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Fluvastatina , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Neuroglía/citología , Fenotipo , Fosfatos de Poliisoprenilo/farmacología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA