Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 276: 130192, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33740653

RESUMEN

The objective of this current review article is to evaluate the current knowledge of the contaminated soil in the study area based on reports and the results of previous experimental studies in the literature and to discuss the feasibility of phytoremediation with biofuel production using energy crops. The results indicated that the soil contamination was related mainly to the thermal power plant and mining activities in Kütahya, high industrial activity in Izmir, heavy metal and radioactive pollution in Manisa and Mugla. Moreover, the sources of the contamination are geothermal resources and transportation in Aydin and Denizli, respectively. However, soil pollution in Afyonkarahisar and Usak provinces has not been discussed due to a lack of detailed reports and data in the literature. Besides, energy crops such as Zea mays, Ricinus communis, and Gossypium hirsitum were identified as appropriate candidates for Izmir, Denizli, Manisa, and Aydin due to being resistant to the arid climate. In Mugla province, Eucalyptus grandis and Eucalyptus bicostata can be cultivated because of having adaptation to moderate climatic conditions. Ricinus communis and Helianthus annuus were determined to be very suitable energy crops for the phytoremediation of many heavy metals in Kütahya. The review promotes the development of economic, environmental, and social benefits to regain the contaminated areas through phytoremediation. The findings of the study are important for creating sustainable solutions for remediation of polluted soils in Turkey, as well as for shedding light on the process of establishing appropriate policies to make soils contaminated suitable for agriculture.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis , Turquía
2.
J Food Sci Technol ; 54(9): 2825-2832, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28928522

RESUMEN

Vacuum cooling is a rapid evaporative cooling technique and can be used for pre-cooling of leafy vegetables, mushroom, bakery, fishery, sauces, cooked food, meat and particulate foods. The aim of this study was to apply the vacuum cooling and the conventional cooling techniques for the cooling of the meatball and to show the vacuum pressure effect on the cooling time, the temperature decrease and microbial growth rate. The results of the vacuum cooling and the conventional cooling (cooling in the refrigerator) were compared with each other for different temperatures. The study shows that the conventional cooling was much slower than the vacuum cooling. Moreover, the microbial growth rate of the vacuum cooling was extremely low compared with the conventional cooling. Thus, the lowest microbial growth occurred at 0.7 kPa and the highest microbial growth was observed at 1.5 kPa for the vacuum cooling. The mass loss ratio for the conventional cooling and vacuum cooling was about 5 and 9% respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA