Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2312343, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691579

RESUMEN

Seawater batteries that directly utilize natural seawater as electrolytes are ideal sustainable aqueous devices with high safety, exceedingly low cost, and environmental friendliness. However, the present seawater batteries are either primary batteries or rechargeable half-seawater/half-nonaqueous batteries because of the lack of suitable anode working in seawater. Here, a unique lattice engineering to unlock the electrochemically inert anatase TiO2 anode to be highly active for the reversible uptake of multiple cations (Na+, Mg2+, and Ca2+) in aqueous electrolytes is demonstrated. Density functional theory calculations further reveal the origin of the unprecedented charge storage behaviors, which can be attributed to the significant reduction of the cations diffusion barrier within the lattice, i.e., from 1.5 to 0.4 eV. As a result, the capacities of anatase TiO2 with 2.4% lattice expansion are ≈100 times higher than the routine one in natural seawater, and ≈200 times higher in aqueous Na+ electrolyte. The finding will significantly advance aqueous seawater energy storage devices closer to practical applications.

2.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110518

RESUMEN

Rhodium-catalyzed reactions of 2-ethynyl-3-pentamethyldisilanylpyridine derivatives (1 and 2) are reported. The reactions of compounds 1 and 2 in the presence of catalytic amounts of rhodium complexes at 110 °C gave the corresponding pyridine-fused siloles (3) and (4) through intramolecular trans-bis-silylation cyclization. The reaction of 2-bromo-3-(1,1,2,2,2-pentamethyldisilanyl)pyridine with 3-phenyl-1-propyne in the presence of PdCl2(PPh3)2-CuI catalysts afforded 1:2 bis-silylation adduct 6. DFT calculations were also performed to understand the reaction mechanism for the production of compound 3 from compound 1.

3.
Chem Commun (Camb) ; 58(88): 12345-12348, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260074

RESUMEN

Al-MIL-101-NH2, which was previously regarded as being inactive as a photocatalyst, produces hydrogen peroxide (H2O2) via O2 reduction under visible-light irradiation, accompanied by efficient suppression of undesired H2O2 decomposition. The low-coordination Lewis acid sites in trimetric Al-oxo clusters are crucial for the electron transfer to O2.

4.
ACS Omega ; 7(34): 30369-30375, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061719

RESUMEN

Silole derivatives are attracting significant attention as new functional materials with excellent electronic and photophysical properties. Thus, the development of synthesis methods to afford such derivatives is highly desirable. Herein, the synthesis of pyridine-fused siloles under the conditions of the Sonogashira coupling reaction is described. The reactions of 2-bromo-3-(pentamethyldisilanyl)pyridine (1) with ethynylbenzene derivatives in the presence of PdCl2(PPh3)2-CuI as a catalyst afforded the corresponding pyridine-fused siloles (2a-2c) through intramolecular trans-bis-silylation. DFT calculations were also performed to understand the reaction mechanism. This paper is the first to report on the successful use of palladium catalysts in the trans-bis-silylation of alkynes with disilanes.

5.
Chem Sci ; 13(27): 8137-8147, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35919430

RESUMEN

Hydrogen spillover, the migration of dissociated hydrogen atoms from noble metals to their support materials, is a ubiquitous phenomenon and is widely utilized in heterogeneous catalysis and hydrogen storage materials. However, in-depth understanding of the migration of spilled hydrogen over different types of supports is still lacking. Herein, hydrogen spillover in typical reducible metal oxides, such as TiO2, CeO2, and WO3, was elucidated by combining systematic characterization methods involving various in situ techniques, kinetic analysis, and density functional theory calculations. TiO2 and CeO2 were proven to be promising platforms for the synthesis of non-equilibrium RuNi binary solid solution alloy nanoparticles displaying a synergistic promotional effect in the hydrolysis of ammonia borane. Such behaviour was driven by the simultaneous reduction of both metal cations under a H2 atmosphere over TiO2 and CeO2, in which hydrogen spillover favorably occurred over their surfaces rather than within their bulk phases. Conversely, hydrogen atoms were found to preferentially migrate within the bulk prior to the surface over WO3. Thus, the reductions of both metal cations occurred individually on WO3, which resulted in the formation of segregated NPs with no activity enhancement.

6.
Langmuir ; 38(15): 4785-4792, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35385665

RESUMEN

This study has shown that antimony-doped tin oxide (ATO) works as a robust "renewable catalyst" for the electrochemical synthesis of hydrogen peroxide (H2O2) from water and oxygen. Antimony doping into SnO2 gives rise to remarkable electrocatalytic activity for two-electron oxygen reduction reaction (2e--ORR) by water with a volcano-type relation between the activity and doping levels (xSb). Density functional theory simulations highlight the importance of an isolated Sb atom of ATO inducing the high activity and selectivity for 2e--ORR due to the effects of O2 adsorption enhancement, decrease in the activation energy, and lowering the adsorptivity of H2O2. Electrolysis by a normal three-electrode cell using ATO (xSb = 10.2 mol %) at -0.22 V (vs reversible hydrogen electrode) stably and continuously produces H2O2 with a turnover frequency of 6.6 s-1. This remarkable activity can be maintained even after removing the surface layer of ATO by argon-ion sputtering.

7.
Small ; 17(51): e2102970, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34636132

RESUMEN

Lattice strain modulation and vacancy engineering are both effective approaches to control the catalytic properties of heterogeneous catalysts. Here, Co@CoO heterointerface catalysts are prepared via the controlled reduction of CoO nanosheets. The experimental quantifications of lattice strain and oxygen vacancy concentration on CoO, as well as the charge transfer across the Co-CoO interface are all linearly correlated to the catalytic activity toward the aqueous phase reforming of formaldehyde to produce hydrogen. Mechanistic investigations by spectroscopic measurements and density functional theory calculations elucidate the bifunctional nature of the oxygen-vacancy-rich Co-CoO interfaces, where the Co and the CoO sites are responsible for CH bond cleavage and OH activation, respectively. Optimal catalytic activity is achieved by the sample reduced at 350 °C, Co@CoO-350 which exhibits the maximum concentration of Co-CoO interfaces, the maximum concentration of oxygen vacancies, a lattice strain of 5.2% in CoO, and the highest aqueous phase formaldehyde reforming turnover frequency of 50.4 h-1 at room temperature. This work provides not only new insights into the strain-vacancy-activity relationship at bifunctional catalytic interfaces, but also a facile synthetic approach to prepare heterostructures with highly tunable catalytic activities.

8.
ACS Appl Mater Interfaces ; 13(41): 48669-48678, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34615345

RESUMEN

Defect engineering of metal oxides is a facile and promising strategy to improve their photocatalytic activity. In the present study, Pt/TiO2-x was prepared by a reduction treatment assisted by hydrogen spillover to pure rutile, anatase, and brookite and was subsequently used for hydrogen production from an aqueous methanol solution. With increasing reduction temperature, the photocatalytic activity of the rutile Pt/TiO2-x increased substantially, whereas the activity of anatase Pt/TiO2-x decreased and that of brookite Pt/TiO2-x was independent of the treatment temperature. Electron-spin resonance analysis revealed that rutile and brookite possess similar defect sites (Ti3+ and concomitant oxygen vacancy) after the reduction at 600 °C, whereas different resonance signals were observed for anatase after the reduction at 600 °C. During the reduction process, electrons donated from spillover hydrogen migrate between the conduction band and the inherent midgap states. This research demonstrates that the depth of the inherent midgap states, depending on the crystal phases, influences the generation of defects, which play a key role in the photocatalytic performance of Pt/TiO2-x.

9.
Chem Sci ; 12(29): 9902-9915, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34349963

RESUMEN

Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/H x MoO3-y ) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat -1 h-1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable H x MoO3-y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated "reverse Mars-van Krevelen (M-vK)" mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion.

10.
Nano Lett ; 21(16): 7021-7029, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34369781

RESUMEN

Hydrogen ion is an attractive charge carrier for energy storage due to its smallest radius. However, hydrogen ions usually exist in the form of hydronium ion (H3O+) because of its high dehydration energy; the choice of electrode materials is thus greatly limited to open frameworks and layered structures with large ionic channels. Here, the desolvation of H3O+ is achieved by using anatase TiO2 as anodes, enabling the H+ intercalation with a strain-free characteristic. Density functional theory calculations show that the desolvation effects are dependent on the facets of anatase TiO2. Anatase TiO2 (001) surface, a highly reactive surface, impels the desolvation of H3O+ into H+. When coupled with a MnO2 cathode, the proton battery delivers a high specific energy of 143.2 Wh/kg at an ultrahigh specific power of 47.9 kW/kg. The modulation of the interactions between ions and electrodes opens new perspectives for battery optimizations.

11.
Nat Commun ; 12(1): 3884, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162865

RESUMEN

High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements.

12.
Materials (Basel) ; 13(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348796

RESUMEN

Oxygen-containing functional groups tend to induce a strong interaction between solid adsorbents and iodine molecules, yet have not been systematically investigated. Herein, on the basis of a series of nitric acid-treated graphene oxide (GO) with different contents of oxygen functional groups for iodine adsorption, it was found that the iodine uptake capacity is proportionate to the oxygen content and the diversities of oxygen-containing groups. The density functional theory (DFT) calculation results also suggest that oxygen-containing groups result in strong interactions between iodine molecules and the adsorbents through a covalent bond-forming process, among which -OH groups possess a higher adsorption energy averagely. Such theoretical and experimental work deepens our understanding of the effects of oxygen functional groups on iodine adsorption and provides novel ideas for future design and synthesis of high-performance solid adsorbents for radioactive iodine.

13.
Nat Commun ; 10(1): 4094, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554785

RESUMEN

The hydrogen isotope deuterium is widely used in the synthesis of isotopically-labeled compounds and in the fabrication of semiconductors and optical fibers. However, the facile production of deuterium gas (D2) and hydrogen deuteride (HD) in a controlled manner is a challenging task, and rational heterogeneously-catalyzed protocols are still lacking. Herein, we demonstrate the selective production of hydrogen isotope compounds from a combination of formic acid and D2O, through cooperative action by a PdAg nanocatalyst on a silica substrate whose surface is modified with amine groups. In this process, D2 is predominantly evolved by the assist of weakly basic amine moieties, while nanocatalyst particles in the vicinity of strongly basic amine groups promote the preferential formation of HD. Kinetic data and calculations based on semi-classically corrected transition state theory coupled with density functional theory suggest that quantum tunneling dominates the hydrogen/deuterium exchange reaction over the metallic PdAg surfaces.


Asunto(s)
Formiatos/química , Hidrógeno/farmacología , Catálisis , Preparaciones de Acción Retardada/farmacología , Deuterio/química , Óxido de Deuterio/química , Hidrogenación , Nanopartículas/química , Agua/química
14.
ACS Appl Mater Interfaces ; 11(37): 33946-33954, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31462039

RESUMEN

Efficient molecular hydrogen generation from renewable biomass-derived resources and water is of great importance to the sustainable development of the future society. Herein, ultrasmall Ag nanoclusters supported on a defect-rich MgO matrix (AgUCs/MgO) are synthesized by a facile impregnation/calcination method and are applied to robust oxygen-promoted formaldehyde reforming into H2 at room temperature. Density functional theory calculations and experimental observations show that the catalyst spatially builds up a channel for directional electron transfer from electron-rich Ag sites to the anti-bonding π orbital of chemisorbed bridged O2 molecules, leading to the implementation of low-temperature O2 adsorption and activation. The catalytically active species, •OOH, is thus selectively generated via a preferential two-electron reduction of O2 with a low energy barrier on Ag sites, involving an unusual long-range proton-coupled electron transfer process. The •OOH-AgUCs/MgO active center is efficient for the subsequent C-H activation and H2 generation, leading to a 3-fold improvement of the turnover frequency as compared with its analogous AgNPs/MgO catalyst. Our atomic-level design and synthetic strategy provide a platform that facilitates the construction of an electron-proton transfer channel for catalysis, altered adsorption configurations of activated reactants, and enhancement of catalytic hydrogen generation activity, extending a promising direction for the development of next-generation energy catalysts.

15.
Chemphyschem ; 20(17): 2155-2161, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31332925

RESUMEN

Single-crystal SnO2 nanorods were grown on rutile TiO2 with a heteroepitaxial relation of SnO2 {001}/TiO2 {001} (SnO2 -NR#TiO2 ) by a hydrothermal reaction. Resulting compressive lattice strain in the SnO2 -NR near the interface induces a continuous increase in the a-axis length extending over 60 nm to relax towards the [001] direction from the root to the tip. UV-light irradiation of the robust SnO2 -NR#TiO2 stably progresses the selective oxidation of ethanol to acetaldehyde with an external quantum yield of 25.6 % at excitation wavelength (λex )=365 nm under ambient temperature and pressure. Spectroscopic analyses and density functional theory simulation results suggested that the extremely high photocatalytic activity stems from the smooth interfacial electron transfer from TiO2 to SnO2 -NR through the high-quality junction and subsequent efficient charge separation due to the lattice strain-induced unidirectional potential gradient of the conduction band minimum in the SnO2 -NR.

16.
Chemphyschem ; 20(16): 2054-2059, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31260153

RESUMEN

The development of nanostructured semiconductor electrodes represented by a mesoporous TiO2 nanocrystalline (mp-TiO2 ) film is currently bringing great progresses in photoelectrochemical (PEC) devices for solar-to-electricity and solar-to-chemical conversion. Two serious losses can occur in PEC devices: 1) recombination between the conduction band (CB) electrons and valence band (VB) holes in the bulk and at the surface and 2) back reaction or electron trapping by oxidant in the electrolyte solution during transport to the electron-collecting electrode. Thus, the major challenge in common with the nanostructured semiconductor photoanodes is to achieve efficient charge separation and electron transport. In this study, an ultrathin SiOx layer was formed on both the external and the internal surface of mp-TiO2 using an original chemisorption-calcination technique employing 1,3,5,7-tetramethyltetrasiloxane as a starting material. The SiOx surface modification of the mp-TiO2 photoanode drastically prolongs the mean lifetime of CB-electrons in TiO2 because of enhanced charge separation and electron transport by the negative charge applied in aqueous electrolyte solution. We have demonstrated that the performance of a one-compartment H2 O2 -photofuel cell using mp-TiO2 as the photoanode is greatly boosted by the surface modification with the SiOx layer. We anticipate that this methodology is widely applicable to nanostructured metal oxide semiconductor electrodes, contributing to the improvement in the performance of PEC devices.

17.
ChemSusChem ; 12(9): 1977-1983, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30666792

RESUMEN

Solid solutions with of Cu3 VS4 with either Cu3 NbS4 or Cu3 TaS4 (Cu3 Nb1-x Vx S4 or Cu3 Ta1-x Vx S4 ) were prepared by a solid-state reaction and adopted a sulvanite structure. Their band gaps were 1.6-1.7 eV corresponding to the absorption of a wide range of visible light. Ru cocatalyst-loaded Cu3 MS4 (M=V, Nb, Ta), Cu3 Nb1-x Vx S4 , and Cu3 Ta1-x Vx S4 showed photocatalytic activities for sacrificial H2 evolution under visible-light irradiation. Most solid solutions showed better activities than the single-component Cu3 MS4 (M=V, Nb, Ta). Cu3 MS4 (M=V, Nb), Cu3 Nb1-x Vx S4 , and Cu3 Ta1-x Vx S4 also functioned as photoelectrodes and gave cathodic photocurrents under visible-light irradiation, indicating a p-type semiconductor character. Cu3 Nb0.9 V0.1 S4 showed the best photocatalytic and photoelectrochemical performances. When Ru-loaded Cu3 Nb0.9 V0.1 S4 was used as a photocathode with a CoOx -loaded BiVO4 photoanode, photoelectrochemical water splitting proceeded under simulated sunlight irradiation without an external bias.

18.
Inorg Chem ; 58(1): 327-338, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30495931

RESUMEN

Oxygenase reactivity toward selective partial oxidation of CH4 to CH3OH requires an atomic oxygen-radical bound to metal (M-O•: oxyl intermediate) that is capable of abstracting an H atom from the significantly strong C-H bond in CH4. Because such a reaction is frequently observed in metal-doped zeolites, it has been recognized that the zeolite provides an environment that stabilizes the M-O• intermediate. However, no experimental data of M-O• have so far been discovered in the zeolite; thus, little is known about the correlation among the state of M-O•, its reactivity for CH4, and the nature of the zeolite environment. Here, we report a combined spectroscopic and computational study of the room-temperature activation of CH4 over ZnII-O• in the MFI zeolite. One ZnII-O• species does perform H-abstraction from CH4 at room temperature. The resultant CH3• species reacts with the other ZnII-O• site to form the ZnII-OCH3 species. The H2O-assisted extraction of surface methoxide yields 29 µmol g-1 of CH3OH with a 94% selectivity. The quantum mechanics (QM)/molecular mechanics (MM) calculation determined the central step as the oxyl-mediated hydrogen atom transfer which requires an activation energy of only 10 kJ mol-1. On the basis of the findings in gas-phase experiments regarding the CH4 activation by the free [M-O•]+ species, the remarkable H-abstraction reactivity of the ZnII-O• species in zeolites was totally rationalized. Additionally, the experimentally validated QM/MM calculation revealed that the zeolite lattice has potential as the ligand to enhance the polarization of the M-O• bond and thereby enables to create effectively the highly reactive M-O• bond required for low-temperature activation of CH4. The present study proposes that tuning of the polarization effect of the anchoring site over heterogeneous catalysts is the valuable way to create the oxyl-based functionality on the heterogeneous catalyst.

19.
Front Chem ; 6: 467, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30338255

RESUMEN

In this research, we have found that layered perovskite titanate Sr2TiO4 doped with Mn4+ exhibits photoluminescence even at room temperature despite no luminescence from Mn4+-doped SrTiO3 with a three-dimensional bulky perovskite structure. The relative position of t2g orbital of Mn to the valence band is a key factor for appearance of Mn4+-emission in Sr2TiO4:Mn. This result suggested usefulness of layered perovskite-type materials as hosts for Mn4+-activated phosphors than the bulky perovskite-type materials. Our investigation into photoluminescence of Mn4+-doped layered perovskite compounds has revealed that strontium scandium oxyfluoride Sr2ScO3F activated with Mn4+ exhibits Mn4+-emission with a peak at 697 nm under excitation at 300-600 nm and its emission intensity is much stronger than that of Sr2TiO4:Mn. The internal and external quantum yields of Sr2ScO3F:Mn were determined to be 50.5 and 43.5% under excitation at 345 nm, respectively.

20.
J Colloid Interface Sci ; 531: 463-472, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053691

RESUMEN

In this work, a simple binary oxygen-deficient Bi2O4-x oxide was prepared, and its crystal structure, optical property, band structure and electronic structure were systematically investigated. Plane-wave-based density functional theory (DFT) calculations were also carried out to determine that Bi2O4-x is a typical indirect-gap semiconductor with the bandgap of 1.1 eV. Bi2O4-x adsorbed ca. 99% of rhodamine B and methyl orange, ca. 95% of methylene blue and ca. 80% of phenol in the dark within initial 30 min. The interaction of the oxygen-deficient structure-induced hydroxyls with pollutant molecules is responsible for the excellent adsorption capacity. Due to its excellent adsorption capacity, Bi2O4-x showed much higher photocatalytic degradation activity toward these pollutants (except for methylene blue) under visible light irradiation than the well-studied Bi2O4, Bi2O3 and P25, which had poor or negligible adsorption capacity toward the pollutants. Methylene blue was degraded by Bi2O4-x with further Pd loading. The photocatalytic mechanism of the oxygen-deficient Bi2O4-x were explored. The scavenging test results showed that direct h+ oxidation contributes to the high photocatalytic activity of the oxygen-deficient Bi2O4-x. This study highlights the potential of developing Bi2O4-x-based materials as a new class with both excellent adsorption capacity and highly efficient photocatalytic activity toward versatile pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...