Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.944
Filtrar
1.
Phys Rev Lett ; 132(8): 082501, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38457706

RESUMEN

The structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.15(5) MeV above the two-neutron decay threshold and widths of 0.32(8) and 0.95(15) MeV, respectively. These were assigned to be the ground (J^{π}=0^{+}) and first excited (2^{+}) state, with E_{x}=1.31(6) MeV. The mass excess of ^{16}Be was thus deduced to be 56.93(13) MeV, some 0.5 MeV more bound than the only previous measurement. Both states were observed to decay by direct two-neutron emission. Calculations incorporating the evolution of the wave function during the decay as a genuine three-body process reproduced the principal characteristics of the neutron-neutron energy spectra for both levels, indicating that the ground state exhibits a strong spatially compact dineutron component, while the 2^{+} level presents a far more diffuse neutron-neutron distribution.

2.
Phys Rev Lett ; 131(21): 212501, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072612

RESUMEN

The cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150 MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations. The remarkable agreement between calculated and measured cross sections in both shape and magnitude validates the molecular structure description of the ^{10}Be ground-state, configured as an α-α core with two valence neutrons occupying π-type molecular orbitals.

6.
Nature ; 620(7976): 965-970, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37648757

RESUMEN

Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10-21 s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called 'doubly magic' nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.

7.
NPJ Microgravity ; 9(1): 61, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553360

RESUMEN

Studying the gravity-dependent characteristics of regolith, fine-grained granular media covering extra-terrestrial bodies is essential for the reliable design and analysis of landers and rovers for space exploration. In this study, we propose an experimental approach to examine a granular flow under stable artificial gravity conditions for a long duration generated by a centrifuge at the International Space Station. We also perform a discrete element simulation of the granular flow in both artificial and natural gravity environments. The simulation results verify that the granular flows in artificial and natural gravity are consistent. Further, regression analysis of the experimental results reveals that the mass flow rate of granular flow quantitatively follows a well-known physics-based law with some deviations under low-gravity conditions, implying that the bulk density of the granular media decreases with gravity. This insight also indicates that the bulk density considered in simulation studies of space probes under low-gravity conditions needs to be tuned for their reliable design and analysis.

8.
J Eur Acad Dermatol Venereol ; 37(12): 2526-2536, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37478291

RESUMEN

BACKGROUND: The effectiveness of moisturizers in preventing infant atopic dermatitis (AD) remains unclear. We previously showed that using 2e moisturizer of commercial moisturizer (Shiseido Japan Co., Ltd.) at least once a day significantly prevented AD in infants as compared with as-needed petroleum jelly. This trial aimed to determine the effectiveness of twice- or once-daily application of Fam's Baby moisturizer (Fam's Inc.) in preventing AD compared with once-daily 2e moisturizer. METHODS: This trial was a single-centre, three-parallel-group, assessor-blinded, superiority, individually randomized, controlled, phase II trial that was conducted from 25 August 2020 to 28 September 2021. We randomly assigned 60 newborns with at least one parent or sibling who has AD to receive Fam's Baby moisturizer twice daily (Group A) or once daily (Group B), or 2e once daily (Group C) in a 1:1:1 ratio until they were 32 weeks old. The primary outcome was the time of AD onset. RESULTS: Atopic dermatitis was observed in 11/20 (55%), 5/20 (25%) and 10/20 (50%), infants in Groups A, B and C, respectively. Cumulative incidence values for AD according to the Kaplan-Meier method showed that infants in Group B tended to maintain an intact skin for a longer period than those in Group C (median time, not reached [NR] vs. 212 days, log-rank test, p = 0.064). Cox regression analysis showed that the risk of AD tended to be lower in Group B (hazard ratio with group C as control, 0.36; 95% confidential intervals: 0.12-1.06). No serious adverse events occurred in any of the enrolled infants. CONCLUSION: Fam's Baby moisturizer may better prevent AD than 2e. Further large-scale trials should be performed to confirm the efficacy of Fam's Baby moisturizer in preventing AD in infants.


Asunto(s)
Dermatitis Atópica , Humanos , Recién Nacido , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/prevención & control , Emolientes/uso terapéutico , Incidencia , Vaselina , Resultado del Tratamiento
9.
Phys Rev Lett ; 130(17): 172501, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172241

RESUMEN

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron-deficient ^{14}O nucleus with large Fermi-surface asymmetry S_{n}-S_{p}=18.6 MeV at ∼100 MeV/nucleon, a widely used energy regime for rare-isotope studies. The measured inclusive cross sections and parallel momentum distributions of the ^{13}N and ^{13}O residues are compared to the state-of-the-art reaction models, with nuclear structure inputs from many-body shell-model calculations. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively. These multiple reaction mechanisms should be considered in analyses of inclusive one-nucleon removal cross sections measured at intermediate energies for quantitative investigation of single-particle strengths and correlations in atomic nuclei.

11.
J Dairy Sci ; 106(10): 6710-6722, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37211485

RESUMEN

Yogurt is made by fermenting milk with 2 lactic acid bacteria, Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus. To comprehensively understand the protocooperation mechanism between S. thermophilus and L. bulgaricus in yogurt fermentation, we examined 24 combinations of cocultures comprising 7 fast- or slow-acidifying S. thermophilus strains with 6 fast- or slow-acidifying L. bulgaricus strains. Furthermore, 3 NADH oxidase (Nox)-deficient mutants (Δnox) and one pyruvate formate-lyase deficient mutant (ΔpflB) of S. thermophilus were used to evaluate the factor that determines the acidification rate of S. thermophilus. The results revealed that the acidification rate of S. thermophilus monoculture determined the yogurt fermentation rates, despite the coexistence of L. bulgaricus, whose acidification rate was either fast or slow. Significant correlation was found between the acidification rate of S. thermophilus monoculture and the amount of formate production. Result using ΔpflB showed that the formate was indispensable for the acidification of S. thermophilus. Moreover, results of the Δnox experiments revealed that formate production required Nox activity, which not only regulated dissolved oxygen, but also the redox potential. The Nox provided the large decrease in redox potential required by pyruvate formate-lyase to produce formate. A highly significant correlation was found between formate accumulation and Nox activity in S. thermophilus. In conclusion, the formate production ability provided by the action of Nox activity determines the acidification rate of S. thermophilus, and consequently, regulates yogurt coculture fermentation.


Asunto(s)
Lactobacillus delbrueckii , Yogur , Animales , Yogur/microbiología , Streptococcus thermophilus/fisiología , NAD , Oxidorreductasas , Fermentación , Formiatos , Concentración de Iones de Hidrógeno
12.
Osteoarthritis Cartilage ; 31(6): 775-779, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36805475

RESUMEN

OBJECTIVE: To investigate the role of Piezo1 and Piezo2 in surgically induced osteoarthritis (OA) in mice. DESIGN: Male conditional knockout (cKO) mice missing Piezo1 and Piezo2 in the joint using Gdf5-Cre transgenic mice were induced with post-traumatic OA by destabilization of the medial meniscus (DMM) of the right knee joint at 12 weeks of age. The severity of OA was histologically assessed at 24 weeks of age. OA-associated pain was evaluated by static weight bearing analysis. Additionally, articular chondrocytes isolated from cKO mice were exposed to fluid flow shear stress (FFSS) to evaluate the expression of OA-associated genes. RESULTS: Mice with conditional deletion of Piezo1 and Piezo2 showed normal joint development with no overt histological changes in the knee joint at 12 weeks and 24 weeks. DMM surgery induced moderate to severe OA in both control and cKO mice (median OARSI score: control, 4.67; cKO, 4.23, P = 0.3082), although a few cKO mice showed milder OA. Pain assessment by static weight-bearing analysis suggested Piezo ablation in the joint has no beneficial effects on pain. FFSS increased the expression of OA-related genes both in control and cKO mice to similar extents. CONCLUSION: Piezo1 and Piezo2 are not essential for normal joint development. Genetic ablation of Piezo channels did not confer evident protective effects on OA progression in mice. In vitro data suggests that different mechanotransducers other than Piezo channels mediate FFSS in mechanical stress-induced gene expression.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratones , Masculino , Animales , Cartílago Articular/patología , Osteoartritis/metabolismo , Ratones Transgénicos , Meniscos Tibiales/patología , Dolor/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Canales Iónicos/genética , Canales Iónicos/metabolismo
13.
J Environ Radioact ; 261: 107138, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841197

RESUMEN

Lagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles whose trajectories are calculated along time and thus these models do not require a spatial discretization (although it is always required in time). In this paper we investigate the dependence of a Lagrangian model output with the grid spacing which is used to calculate concentrations from the final distribution of particles, with the number of particles in the simulation and with the interpolation schemes which are required because of the discrete nature of the water circulation data used to feed the model. Also, a Lagrangian model may describe the exchanges of radionuclides between phases (liquid and solid), which is done in terms of transition probabilities. The dependence of these probabilities with time step is analyzed as well. It was found that the optimum grid size used to calculate concentrations should be carefully checked, and that temporal interpolation is more significant than spatial interpolation to obtain a more accurate solution. A method to estimate the number of particles required to have a certain accuracy level is proposed. Finally, it was found that for low sediment concentrations and small radionuclide kd, exact equations for the transition probabilities should be used; and that phase transitions introduce a stability condition as in Eulerian models.


Asunto(s)
Monitoreo de Radiación , Simulación por Computador , Radioisótopos/análisis , Agua
14.
Rev Sci Instrum ; 93(11): 113518, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461466

RESUMEN

Doppler-backscattering (DBS) has been used in several fusion plasma devices because it can measure the perpendicular velocity of electron density perturbation v⊥, the radial electric field Er, and the perpendicular wavenumber spectrum S(k⊥) with high wavenumber and spatial resolution. In particular, recently constructed frequency comb DBS systems enable observation of turbulent phenomena at multiple observation points in the radial direction. A dual-comb microwave DBS system has been developed for the large helical device plasma measurement. Since it is desirable to control the gain of each frequency-comb separately, a frequency-comb DBS system was developed with a function to adjust the gain of the scattered signal intensity of each channel separately. A correction processing method was also developed to correct the amplitude ratio and the phase difference between the in-phase and quadrature-phase signals of the scattered signals. As a result, the error in Doppler-shift estimation required to observe vertical velocity and the radial electric field was reduced, which enables more precise measurements.

15.
Nature ; 606(7915): 678-682, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35732764

RESUMEN

A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades1, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far2-4, leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy 8He beam was key.

16.
Phys Rev Lett ; 128(15): 152701, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35499908

RESUMEN

The Rare-RI Ring (R3) is a recently commissioned cyclotronlike storage ring mass spectrometer dedicated to mass measurements of exotic nuclei far from stability at Radioactive Isotope Beam Factory (RIBF) in RIKEN. The first application of mass measurement using the R3 mass spectrometer at RIBF is reported. Rare isotopes produced at RIBF-^{127}Sn, ^{126}In, ^{125}Cd, ^{124}Ag, ^{123}Pd-were injected in R3. Masses of ^{126}In, ^{125}Cd, and ^{123}Pd were measured whereby the mass uncertainty of ^{123}Pd was improved. This is the first reported measurement with a new storage ring mass spectrometry technique realized at a heavy-ion cyclotron and employing individual injection of the preidentified rare nuclei. The latter is essential for the future mass measurements of the rarest isotopes produced at RIBF. The impact of the new ^{123}Pd result on the solar r-process abundances in a neutron star merger event is investigated by performing reaction network calculations of 20 trajectories with varying electron fraction Y_{e}. It is found that the neutron capture cross section on ^{123}Pd increases by a factor of 2.2 and ß-delayed neutron emission probability, P_{1 n}, of ^{123}Rh increases by 14%. The neutron capture cross section on ^{122}Pd decreases by a factor of 2.6 leading to pileup of material at A=122, thus reproducing the trend of the solar r-process abundances. The trend of the two-neutron separation energies (S_{2n}) was investigated for the Pd isotopic chain. The new mass measurement with improved uncertainty excludes large changes of the S_{2n} value at N=77. Such large increase of the S_{2n} values before N=82 was proposed as an alternative to the quenching of the N=82 shell gap to reproduce r-process abundances in the mass region of A=112-124.

17.
Sci Rep ; 12(1): 5507, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365747

RESUMEN

Self-organized structure formation in magnetically confined plasmas is one of the most attractive subjects in modern experimental physics. Nonequilibrium media are known to often exhibit phenomena that cannot be predicted by superposition of linear theories. One representative example of such phenomena is the hydrogen isotope effect in fusion plasmas, where the larger the mass of the hydrogen isotope fuel is the better the plasma confinement becomes, contrary to what simple scaling models anticipate. In this article, threshold condition of a plasma structure formation is shown to have a strong hydrogen isotope effect. To investigate the underlying mechanism of this isotope effect, the electrostatic potential is directly measured by a heavy ion beam probe. It is elucidated that the core electrostatic potential transition occurs with less input power normalized by plasma density in plasmas with larger isotope mass across the structure formation. This observation is suggestive of the isotope effect in the radial electric field structure formation.

18.
Phys Rev Lett ; 128(8): 085001, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35275668

RESUMEN

A new type of self-sustained divertor oscillation is discovered in the Large Helical Device stellarator, where the peripheral plasma is detached from material diverters by means of externally applied perturbation fields. The divertor oscillation is found to be a self-regulation of an isolated magnetic field structure (the magnetic island) width induced by a drastic change in a poloidal inhomogeneity of the plasma radiation across the detachment-attachment transitions. A predator-prey model between the magnetic island width and a self-generated local plasma current (the bootstrap current) is introduced to describe the divertor oscillation, which successfully reproduces the experimental observations.

20.
Nat Commun ; 13(1): 394, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046390

RESUMEN

Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr3Si7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr3Si7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...