Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339354

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. The high mortality is directly associated with metastatic disease, which is thought to be initiated by colon cancer stem cells, according to the cancer stem cell (CSC) model. Consequently, early identification of those patients who are at high risk for metastasis is crucial for improved treatment and patient outcomes. Metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic biomarker for tumor progression and metastasis formation independent of tumor stage. We previously showed an involvement of MACC1 in cancer stemness in the mouse intestine of our MACC1 transgenic mouse models. However, the expression of MACC1 in human CSCs and possible implications remain elusive. Here, we explored the molecular mechanisms by which MACC1 regulates stemness and the CSC-associated invasive phenotype based on patient-derived tumor organoids (PDOs), patient-derived xenografts (PDXs) and human CRC cell lines. We showed that CD44-enriched CSCs from PDO models express significantly higher levels of MACC1 and LGR5 and display higher tumorigenicity in immunocompromised mice. Similarly, RNA sequencing performed on PDO and PDX models demonstrated significantly increased MACC1 expression in ALDH1(+) CSCs, highlighting its involvement in cancer stemness. We further showed the correlation of MACC1 with the CSC markers CD44, NANOG and LGR5 in PDO models as well as established cell lines. Additionally, MACC1 increased stem cell gene expression, clonogenicity and sphere formation. Strikingly, we showed that MACC1 binds as a transcription factor to the LGR5 gene promoter, uncovering the long-known CSC marker LGR5 as a novel essential signaling mediator employed by MACC1 to induce CSC-like properties in human CRC patients. Our in vitro findings were further substantiated by a significant positive correlation of MACC1 with LGR5 in CRC cell lines as well as CRC patient tumors. Taken together, this study indicates that the metastasis inducer MACC1 acts as a cancer stem cell-associated marker. Interventional approaches targeting MACC1 would potentially improve further targeted therapies for colorectal cancer patients to eradicate CSCs and prevent cancer recurrence and distant metastasis formation.

2.
Front Oncol ; 13: 1280977, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144523

RESUMEN

Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.

3.
Biomed Pharmacother ; 168: 115698, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865992

RESUMEN

Metastasis is directly linked to poor prognosis of cancer patients and warrants search for effective anti-metastatic drugs. MACC1 is a causal key molecule for metastasis. High MACC1 expression is prognostic for metastasis and poor survival. Here, we developed novel small molecule inhibitors targeting MACC1 expression to impede metastasis formation. We performed a human MACC1 promoter-driven luciferase reporter-based high-throughput screen (HTS; 118.500 compound library) to identify MACC1 transcriptional inhibitors. HTS revealed 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds as efficient transcriptional inhibitors of MACC1 expression, able to decrease MACC1-induced cancer cell motility in vitro. Structure-activity relationships identified the essential inhibitory core structure. Best candidates were evaluated for metastasis inhibition in xenografted mouse models demonstrating metastasis restriction. ADMET showed high drug-likeness of these new candidates for cancer therapy. The NFκB pathway was identified as one mode of action targeted by these compounds. Taken together, 1,2,3,4-tetrazolo[1,5-b]pyridazine-based compounds are effective MACC1 inhibitors and pose promising candidates for anti-metastatic therapies particularly for patients with MACC1-overexpressing cancers, that are at high risk to develop metastases. Although further preclinical and clinical development is necessary, these compounds represent important building blocks for an individualized anti-metastatic therapy for solid cancers.


Asunto(s)
Neoplasias , Transactivadores , Animales , Humanos , Ratones , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Transactivadores/antagonistas & inhibidores
4.
Oncogene ; 41(39): 4446-4458, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36008464

RESUMEN

Colorectal cancer (CRC) is the second-most common malignant disease worldwide, and metastasis is the main culprit of CRC-related death. Metachronous metastases remain to be an unpredictable, unpreventable, and fatal complication, and tracing the molecular chain of events that lead to metastasis would provide mechanistically linked biomarkers for the maintenance of remission in CRC patients after curative treatment. We hypothesized, that Metastasis-associated in colorectal cancer-1 (MACC1) induces a secretory phenotype to enforce metastasis in a paracrine manner, and found, that the cell-free culture medium of MACC1-expressing CRC cells induces migration. Stable isotope labeling by amino acids in cell culture mass spectrometry (SILAC-MS) of the medium revealed, that S100A4 is significantly enriched in the MACC1-specific secretome. Remarkably, both biomarkers correlate in expression data of independent cohorts as well as within CRC tumor sections. Furthermore, combined elevated transcript levels of the metastasis genes MACC1 and S100A4 in primary tumors and in blood plasma robustly identifies CRC patients at high risk for poor metastasis-free (MFS) and overall survival (OS). Mechanistically, MACC1 strengthens the interaction of ß-catenin with TCF4, thus inducing S100A4 synthesis transcriptionally, resulting in elevated secretion to enforce cell motility and metastasis. In cell motility assays, S100A4 was indispensable for MACC1-induced migration, as shown via knock-out and pharmacological inhibition of S100A4. The direct transcriptional and functional relationship of MACC1 and S100A4 was probed by combined targeting with repositioned drugs. In fact, the MACC1-ß-catenin-S100A4 axis by statins (MACC1) and niclosamide (S100A4) synergized in inhibiting cancer cell motility in vitro and metastasis in vivo. The MACC1-ß-catenin-S100A4 signaling axis is causal for CRC metastasis. Selectively repositioned drugs synergize in restricting MACC1/S100A4-driven metastasis with cross-entity potential.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias del Recto , Aminoácidos/metabolismo , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Niclosamida/farmacología , Niclosamida/uso terapéutico , Neoplasias del Recto/genética , Proteína de Unión al Calcio S100A4/genética , Proteína de Unión al Calcio S100A4/metabolismo , Transactivadores/genética , beta Catenina/metabolismo
5.
Cancers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740524

RESUMEN

Metastasis-associated in colon cancer 1 (MACC1) is a marker for metastasis, tumor cell migration, and increased proliferation in colorectal cancer (CRC). Tumors with high MACC1 expression show a worse prognosis and higher invasion into neighboring structures. Yet, many facets of the pro-migratory effects are not fully understood. Atomic force microscopy and single cell live imaging were used to quantify biomechanical and migratory properties in low- and high-MACC1-expressing CRC cells. Furthermore, collective migration and expansion of small, cohesive cell colonies were analyzed using live cell imaging and particle image velocimetry. Lastly, the impact of proliferation on collective migration was determined by inhibition of proliferation using mitomycin. MACC1 did not affect elasticity, cortex tension, and single cell migration of CRC cells but promoted collective migration and colony expansion in vitro. Measurements of the local velocities in the dense cell layers revealed proliferation events as regions of high local speeds. Inhibition of proliferation via mitomycin abrogated the MACC1-associated effects on the collective migration speeds. A simple simulation revealed that the expansion of cell clusters without proliferation appeared to be determined mostly by single cell properties. MACC1 overexpression does not influence single cell biomechanics and migration but only collective migration in a proliferation-dependent manner. Thus, targeting proliferation in high-MACC1-expressing tumors may offer additional effects on cell migration.

6.
Methods Mol Biol ; 2521: 1-21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732990

RESUMEN

Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.


Asunto(s)
Vectores Genéticos , Neoplasias , Técnicas de Transferencia de Gen , Genes Relacionados con las Neoplasias , Terapia Genética , Vectores Genéticos/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Transgenes
7.
Methods Mol Biol ; 2521: 173-188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732998

RESUMEN

Bacterial toxins gain growing attention as potential cancer treatment due to their potent cytotoxic effects. Among the very different toxins with diverse modes of action, the Clostridium perfringens enterotoxin (CPE) is in focus to treat solid cancers. This toxin targets the tight junction proteins claudin-3 and -4 (Cldn-3/4), which are frequently overexpressed in solid cancers. Binding to these claudins induces pore formation in the host cell plasma membrane leading to rapid oncoleaking cell death of tumor cells. Based on this, extending the targeting of CPE beyond Cldn-3/4 is of interest, since other claudins, such as claudin-1 or -5 are often overexpressed in various cancer entities such as non-small-cell lung cancer (NSCLC) or papillary thyroid carcinoma. In this chapter we describe the modification of a CPE-encoding vector by structure-directed mutagenesis to either preferentially target Cldn-1 and -5 or to expand targeting to Cldn1-9 for improved broadened cytotoxic targeting of claudin-overexpressing tumors such as but not limited to lung cancer via CPE gene transfer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Claudinas/genética , Claudinas/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Terapia Genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia
8.
Methods Mol Biol ; 2521: 317-328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733006

RESUMEN

Plasmid DNA in any form (plasmid DNA, minicircle, miniplasmid) does experience renewed and increasing attention for use in gene therapy and DNA vaccination. For such applications, stability analyses and quality control are essential prerequisites for clinical use. In this context we analyzed the stability of good manufacturing practice (GMP)-grade pCMVß reporter plasmid DNA by capillary gel electrophoresis. The plasmid DNA was produced for a clinical gene transfer study for treatment of malignant melanoma. The pCMVß plasmid DNA was stored at -20 °C for 20 years under continuous, controlled monitoring. Another plasmid., pCMV-Luc, stored for 15 years, served as reference. The stability of plasmid DNA was analyzed by capillary gel electrophoresis (CGE) and functionally tested in vitro by LacZ functional assay. In this chapter we provide the detailed description of CGE and functional analysis of the GMP-grade pCMVß and also pCMV-Luc plasmid DNA. By this the proportion of open circular and supercoiled or covalently closed circular forms of plasmid DNA is analyzed. Functionality of the plasmid was tested by in vitro transfection and LacZ functional assay. In result of this, the 20-year-old plasmid DNA showed topology and expression performance, which revealed significant alterations in topology while maintaining functionality regarding transgene expression. Therefore, stable storage conditions are effective to mainly preserve the integrity of the plasmid DNA as important parameter for long-term storage of, for example, reference samples.


Asunto(s)
Electroforesis Capilar , Terapia Genética , ADN/genética , Electroforesis Capilar/métodos , Terapia Genética/métodos , Plásmidos/genética , Control de Calidad
9.
Br J Cancer ; 127(4): 675-685, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35597866

RESUMEN

BACKGROUND: The metastasis inducing gene MACC1 is a prognostic and predictive biomarker for metastasis in several cancers. Its mechanism of inducing metastasis includes the transcriptional control of other cancer-related target genes. Here, we investigate the interplay with the metastasis driver S100P in CRC progression. METHODS: MACC1-dependent S100P expression was analysed by qRT-PCR. The binding of MACC1 to the S100P promoter was determined by ChIP. Alterations in cell proliferation and motility were determined by functional in vitro assays. In vivo metastasis after intrasplenic transplantation was assessed by bioluminescence imaging and evaluation of tumour growth and liver metastasis. The prognostic value of S100P was determined in CRC patients by ROC-based Kaplan-Meier analyses. RESULTS: Expression of S100P and MACC1 correlated positively in CRC cells and colorectal tumours. MACC1 was found binding to the S100P promoter and induces its expression. The overexpression of S100P increased proliferation, migration and invasion in vitro and significantly induced liver metastasis in vivo. S100P expression was significantly elevated in metachronously metastasising CRC and was associated with shorter metastasis-free survival. CONCLUSIONS: We identified S100P as a transcriptional target gene of MACC1. Expression of S100P increases the metastatic potential of CRC cells in vitro and in vivo, and serves as a prognostic biomarker for metastasis-free survival of CRC patients, emphasising novel therapeutic interventions targeting S100P.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Proteínas de Unión al Calcio/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Pronóstico , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Cancers (Basel) ; 14(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35406521

RESUMEN

Metastasis-Associated in Colon Cancer 1 (MACC1) is a strong prognostic biomarker inducing proliferation, migration, invasiveness, and metastasis of cancer cells. The context of MACC1 dysregulation in cancers is, however, still poorly understood. Here, we investigated whether chromosomal instability and somatic copy number alterations (SCNA) frequently occurring in CRC contribute to MACC1 dysregulation, with prognostic and predictive impacts. Using the Oncotrack and Charité CRC cohorts of CRC patients, we showed that elevated MACC1 mRNA expression was tightly dependent on increased MACC1 gene SCNA and was associated with metastasis and shorter metastasis free survival. Deep analysis of the COAD-READ TCGA cohort revealed elevated MACC1 expression due to SCNA for advanced tumors exhibiting high chromosomal instability (CIN), and predominantly classified as CMS2 and CMS4 transcriptomic subtypes. For that cohort, we validated that elevated MACC1 mRNA expression correlated with reduced disease-free and overall survival. In conclusion, this study gives insights into the context of MACC1 expression in CRC. Increased MACC1 expression is largely driven by CIN, SCNA gains, and molecular subtypes, potentially determining the molecular risk for metastasis that might serve as a basis for patient-tailored treatment decisions.

11.
Cancers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406545

RESUMEN

Esophageal and Gastric Adenocarcinomas (AGE/S) are characterized by early metastasis and poor survival. MACC1 (Metastasis Associated in Colon Cancer 1) acts in colon cancer as a metastasis inducer and is linked to reduced survival. This project illuminates the role and potential for the inhibition of MACC1 in AGE/S. Using 266 of 360 TMAs and survival data of AGE/S patients, we confirm the value of MACC1 as an independent negative prognostic marker in AGE/S patients. MACC1 gene expression is correlated with survival and morphological characteristics. In vitro analysis of lentivirally MACC1-manipulated subclones of FLO-1 and OE33 showed enhanced migration induced by MACC1 in both cell line models, which could be inhibited by the MEK1 inhibitor selumetinib. In vivo, the efficacy of selumetinib on tumor growths and metastases of MACC1-overexpressing FLO-1 cells xenografted intrasplenically in NOG mice was tested. Mice with high-MACC1-expressing cells developed faster and larger distant metastases. Treatment with selumetinib led to a significant reduction in metastasis exclusively in the MACC1-positive xenografts. MACC1 is an enhancer of tumor aggressiveness and a predictor of poor survival in AGE/S. This effect can be inhibited by selumetinib.

12.
Cells ; 11(6)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35326507

RESUMEN

Deregulated Wnt-signaling is a key mechanism driving metastasis in adenocarcinoma of the gastroesophageal junction and stomach (AGE/S). The oncogene S100A4 was identified as a Wnt-signaling target gene and is known to promote metastasis. In this project, we illuminate the role of S100A4 for metastases development and disease prognosis of AGE/S. Five gastric cancer cell lines were assessed for S100A4 expression. Two cell lines with endogenous high S100A4 expression were used for functional phenotyping including analysis of proliferation and migration after stable S100A4 knock-down. The prognostic value of S100A4 was evaluated by analyzing the S100A4 expression of tissue microarrays with samples of 277 patients with AGE/S. S100A4 knock-down induced lower migration in FLO1 and NCI-N87 cells. Treatment with niclosamide in these cells led to partial inhibition of S100A4 and to reduced migration. Patients with high S100A4 expression showed lower 5-year overall and disease-specific survival. In addition, a larger share of patients in the S100A4 high expressing group suffered from metachronous metastasis. This study identifies S100A4 as a negative prognostic marker for patients with AGE/S. The strong correlation between S100A4 expression, metastases development and patient survival might open opportunities to use S100A4 to improve the prognosis of these patients and as a therapeutic target for intervention in this tumor entity.


Asunto(s)
Adenocarcinoma , Proteínas S100 , Adenocarcinoma/metabolismo , Esófago/patología , Humanos , Pronóstico , Proteína de Unión al Calcio S100A4/genética , Proteínas S100/genética , Proteínas S100/metabolismo , Estómago/patología
14.
Int J Oncol ; 60(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014688

RESUMEN

Obesity is a major and increasing public health concern, associated with an increased risk of and mortality from several types of cancer including colorectal cancer (CRC), being associated with cancer progression, metastasis and resistance to therapy. It was hypothesized that the expression of cancer/metastasis­inducing gene metastasis­associated in colon cancer 1 (MACC1) is increased in obesity, which may constitute a link to obesity­induced cancer. The present study thus analyzed circulating cell­free plasma MACC1 expression levels in human obese (vs. normal weight) adult individuals from independent studies, namely the Martin Luther University (MLU) study (n=32) and the Metabolic syndrome study (MetScan, Berlin) (n=191). Higher plasma MACC1 levels were found in obese individuals, increasing with a greater body fat mass and body mass index; these levels were predominantly observed in male and to a lesser extent in female individuals, although the results were not significant. A reduction in body fat mass following dietary intervention and physical exercise decreased the MACC1 expression levels in the MLU study. Furthermore, Wistar rats with diet­induced obesity exhibited slightly increased plasma MACC1 levels compared with rats of normal weight. The obese Wistar rats exposed to azoxymethane to induce colon cancer exhibited a more severe colon tumor outcome, which was associated with significantly increased MACC1 levels compared with their non­obese littermates. On the whole, the findings of the present study suggest an association between MACC1 and obesity, as well as with obesity­induced CRC.


Asunto(s)
Neoplasias Colorrectales/genética , Obesidad/genética , Transactivadores/metabolismo , Adiposidad/genética , Adulto , Anciano , Animales , Índice de Masa Corporal , Movimiento Celular/genética , Neoplasias Colorrectales/epidemiología , Femenino , Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Obesidad/epidemiología , Ratas , Ratas Wistar , Transactivadores/genética
15.
Eur J Pharm Sci ; 170: 106107, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34958884

RESUMEN

Conventional eukaryotic expression plasmids contain a DNA backbone that is dispensable for the cellular expression of the transgene. In order to reduce the vector size, minicircle DNA technology was introduced. A drawback of the minicircle technology are considerable production costs. Nanoplasmids are a relatively new class of mini-DNA constructs that are of tremendous potential for pharmaceutical applications. In this study we have designed novel suicide nanoplasmid constructs coding for plant derived ribosome-inactivating proteins. The suicide-nanoplasmids were formulated with a targeted K16-lysine domain, analyzed for size, and characterized by electron microscopy. The anti-proliferative activity of the suicide-nanoplasmids was investigated in vitro by real time microscopy and the expression kinetic was determined using an enhanced green fluorescent protein nanoplasmid variant. In an aggressive in vivo neuroblastoma tumor model, treated mice showed a reduced tumor growth whereby the therapy was well tolerated.


Asunto(s)
Vectores Genéticos , Proteínas Inactivadoras de Ribosomas , Animales , Ratones , Plásmidos , Ribosomas
16.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830078

RESUMEN

Tumor cell crosstalk with platelets and, subsequently, their activation are key steps in hematogenous tumor metastasis. MACC1 is an oncogene involved in molecular pathogenesis of colorectal cancer (CRC) and other solid tumor entities, mediating motility and metastasis, making MACC1 an accepted prognostic biomarker. However, the impact of MACC1 on platelet activation has not yet been addressed. Here, we investigated the activation of platelets by human CRC cells upon MACC1 modulation, indicated by platelet aggregation and granule release. These approaches led to the identification of insulin-like growth factor binding protein-2 (IGFBP2) as a functional downstream molecule of MACC1, affecting communication with platelets. This was confirmed by an shRNA-mediated IGFBP2 knockdown, while maintaining MACC1 activity. Although IGFBP2 displayed an attenuated platelet activation potential, obviously by scavenging IGF-I as a platelet costimulatory mediator, the MACC1/IGFBP2 axis did not affect the thrombin formation potential of the cells. Furthermore, the IGFBP2/MACC1-driven cell migration and invasiveness was further accelerated by platelets. The key role of IGFBP2 for the metastatic spread in vivo was confirmed in a xenograft mouse model. Data provide evidence for IGFBP2 as a downstream functional component of MACC1-driven metastasis, linking these two accepted oncogenic biomarkers for the first time in a platelet context.


Asunto(s)
Plaquetas/metabolismo , Comunicación Celular , Neoplasias Colorrectales/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transactivadores/metabolismo , Animales , Plaquetas/patología , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia
17.
Viruses ; 13(10)2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34696348

RESUMEN

The coxsackievirus B3 strain PD-0 has been proposed as a new oncolytic virus for the treatment of colorectal carcinoma. Here, we generated a cDNA clone of PD-0 and analyzed the virus PD-H, newly generated from this cDNA, in xenografted and syngenic models of colorectal cancer. Replication and cytotoxic assays revealed that PD-H replicated and lysed colorectal carcinoma cell lines in vitro as well as PD-0. Intratumoral injection of PD-H into subcutaneous DLD-1 tumors in nude mice resulted in strong inhibition of tumor growth and significantly prolonged the survival of the animals, but virus-induced systemic infection was observed in one of the six animals. In a syngenic mouse model of subcutaneously growing Colon-26 tumors, intratumoral administration of PD-H led to a significant reduction of tumor growth, the prolongation of animal survival, the prevention of tumor-induced cachexia, and the elevation of CD3+ and dendritic cells in the tumor microenvironment. No virus-induced side effects were observed. After intraperitoneal application, PD-H induced weak pancreatitis and myocarditis in immunocompetent mice. By equipping the virus with target sites of miR-375, which is specifically expressed in the pancreas, organ infections were prevented. Moreover, employment of this virus in a syngenic mouse model of CT-26 peritoneal carcinomatosis resulted in a significant reduction in tumor growth and an increase in animal survival. The results demonstrate that the immune status of the host, the route of virus application, and the engineering of the virus with target sites of suitable microRNAs are crucial for the use of PD-H as an oncolytic virus.


Asunto(s)
Infecciones por Coxsackievirus/inmunología , Enterovirus/fisiología , Virus Oncolíticos/fisiología , Animales , Células CHO , Neoplasias Colorrectales , Cricetulus , Enterovirus/clasificación , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Desnudos , MicroARNs , Miocarditis , Neoplasias , Virus Oncolíticos/clasificación
18.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503203

RESUMEN

Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.

19.
Oncogene ; 40(34): 5286-5301, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34247190

RESUMEN

Cancer metastasis causes >90% of cancer deaths and remains a major treatment challenge. Here we deciphered the impact of tyrosine phosphorylation of MACC1, a causative driver for cancer metastasis, for cancer cell signaling and novel interventions to restrict cancer metastasis. We identified MACC1 as new MEK1 substrate. MEK1 directly phosphorylates MACC1, leading to accelerated and increased ERK1 activation. Mutating in silico predicted hierarchical MACC1 tyrosine phosphorylation sites abrogates MACC1-induced migration, invasion, and MET expression, a transcriptional MACC1 target. Targeting MEK1 by RNAi or clinically applicable MEK1 inhibitors AZD6244 and GSK1120212 reduces MACC1 tyrosine phosphorylation and restricts MACC1-induced metastasis formation in mice. Although MEK1 levels, contrary to MACC1, are not of prognostic relevance for CRC patients, MEK1 expression was found indispensable for MACC1-induced metastasis. This study identifies MACC1 as new MEK1 substrate for tyrosine phosphorylation decisively impacting cell motility, tumor growth, and metastasis. Thus, MAP kinase signaling is not linear leading to ERK activation, but branches at the level of MEK1. This fundamental finding opens new therapeutic options for targeting the MEK1/MACC1 axis as novel vulnerability in patients at high risk for metastasis. This might be extended from CRC to further solid tumor entities.


Asunto(s)
Neoplasias del Colon , Movimiento Celular , Humanos , Proteína Quinasa 3 Activada por Mitógenos , Fosforilación , Procesamiento Proteico-Postraduccional , Piridonas , Pirimidinonas , Transducción de Señal
20.
Methods Mol Biol ; 2294: 133-142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33742398

RESUMEN

Drug-mediated interference with metastasis represents a key approach to improve cancer therapy. In this regard, appropriate in vitro assays are needed to identify drugs, which inhibit cell migration as one feature for metastatic potential of cancer cells. One such migration assay is the wound healing or scratch assay, designed to allow cells for closure of an artificially generated gap (wound/scratch) in the monolayer. To identify possibly effective anti-migratory drugs as monotherapy or as synergistic drug combination, novel screening tools besides viability measurements at the experimental endpoint are needed. In this context, particularly drug combinations allow to increase treatment efficacy paralleled by lowered side effects. Here, a protocol for real-time monitoring cellular motility and its inhibition by anti-migratory drugs and combinations by the IncuCyte system and a 96-well scratch assay is described. A pipetting scheme allowing data collection for synergy calculation using one plate per replicate is provided. Using the IncuCyte System 2, drug combinations built of three biological replicates each using three technical replicates can be tested in parallel within hours to few days to accelerate identification of efficient antimetastatic drugs.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Migración Celular/métodos , Movimiento Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Animales , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Células HCT116 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...