Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (198)2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37677018

RESUMEN

The cabbage white butterfly (Pieris rapae) is an important system for applied pest control research and basic research in behavioral and nutritional ecology. Cabbage whites can be easily reared in controlled conditions on an artificial diet, making them a model organism of the butterfly world. In this paper, a manipulation of heavy metal exposure is used to illustrate basic methods for rearing this species. The general protocol illustrates how butterflies can be caught in the field, induced to lay eggs in greenhouse cages, and transferred as larvae to artificial diets. The methods show how butterflies can be marked, measured, and studied for a variety of research questions. The representative results give an idea of how artificial diets that vary in components can be used to assess butterfly performance relative to a control diet. More specifically, butterflies were most tolerant to nickel and least tolerant to copper, with a tolerance of zinc somewhere in the middle. Possible explanations for these results are discussed, including nickel hyper-accumulation in some mustard host plants and recent evidence in insects that copper may be more toxic than previously appreciated. Finally, the discussion first reviews variations to the protocol and directions for troubleshooting these methods, before considering how future research might further optimize the artificial diet used in this study. Overall, by providing a detailed video overview of the rearing and measurement of cabbage whites on artificial diets, this protocol provides a resource for using this system across a wide range of studies.


Asunto(s)
Mariposas Diurnas , Metales Pesados , Animales , Cobre , Metales Pesados/toxicidad , Níquel
2.
Am Nat ; 200(5): E207-E220, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36260855

RESUMEN

AbstractThe G matrix, which quantifies the genetic architecture of traits, is often viewed as an evolutionary constraint. However, G can evolve in response to selection and may also be viewed as a product of adaptive evolution. Convergent evolution of G in similar environments would suggest that G evolves adaptively, but it is difficult to disentangle such effects from phylogeny. Here, we use the adaptive radiation of Anolis lizards to ask whether convergence of G accompanies the repeated evolution of habitat specialists, or ecomorphs, across the Greater Antilles. We measured G in seven species representing three ecomorphs (trunk-crown, trunk-ground, and grass-bush). We found that the overall structure of G does not converge. Instead, the structure of G is well conserved and displays a phylogenetic signal consistent with Brownian motion. However, several elements of G showed signatures of convergence, indicating that some aspects of genetic architecture have been shaped by selection. Most notably, genetic correlations between limb traits and body traits were weaker in long-legged trunk-ground species, suggesting effects of recurrent selection on limb length. Our results demonstrate that common selection pressures may have subtle but consistent effects on the evolution of G, even as its overall structure remains conserved.


Asunto(s)
Lagartos , Animales , Filogenia , Ecosistema , Fenotipo , Extremidades
3.
J Gen Physiol ; 153(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34351379

RESUMEN

Many poisonous organisms carry small-molecule toxins that alter voltage-gated sodium channel (NaV) function. Among these, batrachotoxin (BTX) from Pitohui poison birds and Phyllobates poison frogs stands out because of its lethality and unusual effects on NaV function. How these toxin-bearing organisms avoid autointoxication remains poorly understood. In poison frogs, a NaV DIVS6 pore-forming helix N-to-T mutation has been proposed as the BTX resistance mechanism. Here, we show that this variant is absent from Pitohui and poison frog NaVs, incurs a strong cost compromising channel function, and fails to produce BTX-resistant channels in poison frog NaVs. We also show that captivity-raised poison frogs are resistant to two NaV-directed toxins, BTX and saxitoxin (STX), even though they bear NaVs sensitive to both. Moreover, we demonstrate that the amphibian STX "toxin sponge" protein saxiphilin is able to protect and rescue NaVs from block by STX. Taken together, our data contradict the hypothesis that BTX autoresistance is rooted in the DIVS6 N→T mutation, challenge the idea that ion channel mutations are a primary driver of toxin resistance, and suggest the possibility that toxin sequestration mechanisms may be key for protecting poisonous species from the action of small-molecule toxins.


Asunto(s)
Venenos , Animales , Batracotoxinas , Aves , Mutación , Venenos/toxicidad , Canales de Sodio/genética
4.
Environ Toxicol Chem ; 39(11): 2228-2236, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32776572

RESUMEN

Neonicotinoid pesticides harm nontarget insects, but their sublethal effects on butterflies are understudied. We exposed larvae of 3 butterfly species (Pieris rapae, Colias philodice, and Danaus plexippus) to low levels of the neonicotinoid imidacloprid in their host plants and followed individuals to adulthood. Imidacloprid altered adult body size, especially in female monarchs, but its effects varied across maternal families, highlighting the importance of considering genetic variation in ecotoxicological testing. Environ Toxicol Chem 2020;39:2228-2236. © 2020 SETAC.


Asunto(s)
Mariposas Diurnas/efectos de los fármacos , Tolerancia a Medicamentos/genética , Variación Genética , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Animales , Tamaño Corporal/efectos de los fármacos , Mariposas Diurnas/genética , Mariposas Diurnas/crecimiento & desarrollo , Femenino , Larva/efectos de los fármacos , Larva/genética , Masculino , Alas de Animales/efectos de los fármacos , Alas de Animales/fisiología
5.
Am Nat ; 195(3): 485-503, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32097036

RESUMEN

Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.


Asunto(s)
Aristolochia/química , Mariposas Diurnas/fisiología , Passiflora/química , Toxinas Biológicas/metabolismo , Tussilago/química , Animales , Evolución Biológica , Mariposas Diurnas/genética , Mariposas Diurnas/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología
6.
Evol Lett ; 2(4): 310-322, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30283684

RESUMEN

On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along "genetic lines of least resistance" defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20-40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape.

7.
Integr Comp Biol ; 58(5): 1008-1017, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010963

RESUMEN

Heavy metal pollution is a major problem in urban and industrial environments, and has a myriad of negative effects on animals. Quantifying the amount of population-level variation that exists for heavy metal tolerance and how plastic responses to heavy metals play out across generations are essential for understanding how animals respond to pollution. As an initial step toward studying transgenerational effects and population-level variation in concert, we brought cabbage white butterflies (Pieris rapae) from two populations-collected from St. Paul, MN, and Davis, CA-into common conditions and fed them a diet dosed with nickel. To measure transgenerational effects, we reared a second generation in a fully factorial design, within each population, to achieve all combinations of parent and offspring exposure to nickel or control diets. Across both generations, we quantified survival and other fitness-related traits, including development time, body size, and egg size and number. We found both population differences and complex transgenerational effects, including a positive effect of nickel on survival and development time in one of the populations. Overall, nickel exposure was stressful in one population, mainly after two generations of exposure, and had neutral or slightly positive effects on the other. We found no evidence for costs of mismatch between parental and offspring environments. While the reasons for the differences observed between the two populations are unclear, the variation in nickel tolerance observed in this species suggests that some organisms may be less affected by low levels of heavy metal pollution in urban and industrial areas than expected.


Asunto(s)
Mariposas Diurnas/fisiología , Ambiente , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Aptitud Genética , Níquel/efectos adversos , Animales , Mariposas Diurnas/efectos de los fármacos , Mariposas Diurnas/genética , California , Ciudades , Femenino , Masculino , Minnesota , Distribución Aleatoria , Urbanización
8.
BMC Genomics ; 18(1): 412, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28549454

RESUMEN

BACKGROUND: Agricultural environments have long presented an opportunity to study evolution in action, and genomic approaches are opening doors for testing hypotheses about adaptation to crops, pesticides, and fertilizers. Here, we begin to develop the cabbage white butterfly (Pieris rapae) as a system to test questions about adaptation to novel, agricultural environments. We focus on a population in the north central United States as a unique case study: here, canola, a host plant, has been grown during the entire flight period of the butterfly over the last three decades. RESULTS: First, we show that the agricultural population has diverged phenotypically relative to a nonagricultural population: when reared on a host plant distantly related to canola, the agricultural population is smaller and more likely to go into diapause than the nonagricultural population. Second, drawing from deep sequencing runs from six individuals from the agricultural population, we assembled the gut transcriptome of this population. Then, we sequenced RNA transcripts from the midguts of 96 individuals from this canola agricultural population and the nonagricultural population in order to describe patterns of genomic divergence between the two. While population divergence is low, 235 genes show evidence of significant differentiation between populations. These genes are significantly enriched for cofactor and small molecule metabolic processes, and many genes also have transporter or catalytic activity. Analyses of population structure suggest the agricultural population contains a subset of the genetic variation in the nonagricultural population. CONCLUSIONS: Taken together, our results suggest that adaptation of cabbage whites to an agricultural environment occurred at least in part through selection on standing genetic variation. Both the phenotypic and genetic data are consistent with the idea that this pest has adapted to an abundant and predictable agricultural resource through a narrowing of niche breadth and loss of genetic variants rather than de novo gain of adaptive alleles. The present research develops genomic resources to pave the way for future studies using cabbage whites as a model contributing to our understanding of adaptation to agricultural environments.


Asunto(s)
Adaptación Fisiológica , Agricultura , Ambiente , Genómica , Lepidópteros/genética , Lepidópteros/fisiología , Animales , Perfilación de la Expresión Génica , Mucosa Intestinal/metabolismo , Anotación de Secuencia Molecular , Fenotipo
9.
Anim Cogn ; 20(1): 87-96, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27576530

RESUMEN

While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas.


Asunto(s)
Mariposas Diurnas , Cognición , Conducta Alimentaria , Animales , Tamaño Corporal , Femenino , Larva , Masculino
10.
Curr Biol ; 26(12): 1616-1621, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27291053

RESUMEN

Novel adaptations must originate and function within an already established genome [1]. As a result, the ability of a species to adapt to new environmental challenges is predicted to be highly contingent on the evolutionary history of its lineage [2-6]. Despite a growing appreciation of the importance of historical contingency in the adaptive evolution of single proteins [7-11], we know surprisingly little about its role in shaping complex adaptations that require evolutionary change in multiple genes. One such adaptation, extreme resistance to tetrodotoxin (TTX), has arisen in several species of snakes through coevolutionary arms races with toxic amphibian prey, which select for TTX-resistant voltage-gated sodium channels (Nav) [12-16]. Here, we show that the relatively recent origins of extreme toxin resistance, which involve the skeletal muscle channel Nav1.4, were facilitated by ancient evolutionary changes in two other members of the same gene family. A substitution conferring TTX resistance to Nav1.7, a channel found in small peripheral neurons, arose in lizards ∼170 million years ago (mya) and was present in the common ancestor of all snakes. A second channel found in larger myelinated neurons, Nav1.6, subsequently evolved resistance in four different snake lineages beginning ∼38 mya. Extreme TTX resistance has evolved at least five times within the past 12 million years via changes in Nav1.4, but only within lineages that previously evolved resistant Nav1.6 and Nav1.7. Our results show that adaptive protein evolution may be contingent upon enabling substitutions elsewhere in the genome, in this case, in paralogs of the same gene family.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Serpientes/genética , Canales de Sodio/genética , Tetrodotoxina , Anfibios , Animales , Familia de Multigenes , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...