Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 213: 164-173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38246514

RESUMEN

Peripheral autonomic nervous system (P-ANS) dysfunction is a critical non-motor phenotype of Parkinson's disease (PD). The majority of PD cases are sporadic and lack identified PD-associated genes involved. Epidemiological and animal model studies suggest an association with pesticides and other environmental toxins. However, the cellular mechanisms underlying toxin induced P-ANS dysfunctions remain unclear. Here, we mapped the global transcriptome changes in human induced pluripotent stem cell (iPSC) derived P-ANS sympathetic neurons during inhibition of the mitochondrial respiratory chain by the PD-related pesticide, rotenone. We revealed distinct transcriptome profiles between acute and chronic exposure to rotenone. In the acute stage, there was a down regulation of specific cation channel genes, known to mediate electrophysiological activity, while in the chronic stage, the human P-ANS neurons exhibited dysregulation of anti-apoptotic and Golgi apparatus-related pathways. Moreover, we identified the sodium voltage-gated channel subunit SCN3A/Nav1.3 as a potential biomarker in human P-ANS neurons associated with PD. Our analysis of the rotenone-altered coding and non-coding transcriptome of human P-ANS neurons may thus provide insight into the pathological signaling events in the sympathetic neurons during PD progression.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/metabolismo , Rotenona/toxicidad , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas/metabolismo , Fenotipo
2.
J Virol ; 97(12): e0095523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37991369

RESUMEN

IMPORTANCE: Mutations and genetic rearrangements are the primary driving forces of evolution. Viruses provide valuable model systems for investigating these mechanisms due to their rapid evolutionary rates and vast genetic variability. To investigate genetic rearrangements in the double-stranded DNA genome of herpes simplex virus type 1, the viral population was serially passaged in various cell types. The serial passaging led to formation of defective genomes, resulted from cell-specific non-canonical rearrangements (NCRs). Interestingly, we discovered shared sequence characteristics underlying the formation of these NCRs across all cell types. Moreover, most NCRs identified in clinical samples shared these characteristics. Based on our findings, we propose a model elucidating the formation of NCRs during viral replication within the nucleus of eukaryotic cells.


Asunto(s)
ADN Viral , Genoma Viral , Herpesvirus Humano 1 , Mutación , ADN Viral/genética , Genoma Viral/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crecimiento & desarrollo , Replicación Viral , Células Eucariotas/virología , Núcleo Celular/virología , Pase Seriado , Humanos
3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232513

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Acetato de Desoxicorticosterona , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Antiinflamatorios/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Enfermedades de los Pequeños Vasos Cerebrales/terapia , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas
4.
Nat Biotechnol ; 40(12): 1807-1813, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35773341

RESUMEN

Multiple clinical trials of allogeneic T cell therapy use site-specific nucleases to disrupt T cell receptor (TCR) and other genes1-6. In this study, using single-cell RNA sequencing, we investigated genome editing outcomes in primary human T cells transfected with CRISPR-Cas9 and guide RNAs targeting genes for TCR chains and programmed cell death protein 1. Four days after transfection, we found a loss of chromosome 14, harboring the TCRα locus, in up to 9% of the cells and a chromosome 14 gain in up to 1.4% of the cells. Chromosome 7, harboring the TCRß locus, was truncated in 9.9% of the cells. Aberrations were validated using fluorescence in situ hybridization and digital droplet PCR. Aneuploidy was associated with reduced proliferation, induced p53 activation and cell death. However, at 11 days after transfection, 0.9% of T cells still had a chromosome 14 loss. Aneuploidy and chromosomal truncations are, thus, frequent outcomes of CRISPR-Cas9 cleavage that should be monitored and minimized in clinical protocols.


Asunto(s)
Sistemas CRISPR-Cas , Linfocitos T , Humanos , Sistemas CRISPR-Cas/genética , Hibridación Fluorescente in Situ , Edición Génica/métodos , Receptores de Antígenos de Linfocitos T/genética , Aneuploidia
5.
Genes (Basel) ; 12(8)2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34440384

RESUMEN

Pathogenic C9orf72-G4C2 repeat expansions are associated with ALS/FTD, but not with Parkinson's disease (PD); yet the possible link between intermediate repeat lengths and PD remains inconclusive. We aim to study the potential involvement of these repeats in PD. The number of C9orf72-repeats were determined by flanking and repeat-primed PCR assays, and the risk-haplotype was determined by SNP-array. Their association with PD was assessed in a stratified manner: in PD-patients-carriers of mutations in LRRK2, GBA, or SMPD1 genes (n = 388), and in PD-non-carriers (NC, n = 718). Allelic distribution was significantly different only in PD-NC compared to 600 controls when looking both at the allele with higher repeat's size (p = 0.034) and at the combined number of repeats from both alleles (p = 0.023). Intermediate repeats (20-60 repeats) were associated with PD in PD-NC patients (p = 0.041; OR = 3.684 (CI 1.05-13.0)) but not in PD-carriers (p = 0.684). The C9orf72 risk-haplotype, determined in a subgroup of 588 PDs and 126 controls, was observed in higher frequency in PD-NC (dominant model, OR = 1.71, CI 1.04-2.81, p = 0.0356). All 19 alleles within the risk-haplotype were associated with higher C9orf72 RNA levels according to the GTEx database. Based on our data, we suggest a model in which intermediate repeats are a risk factor for PD in non-carriers, driven not only by the number of repeats but also by the variants' genotypes within the risk-haplotype. Further studies are needed to elucidate this possible role of C9orf72 in PD pathogenesis.


Asunto(s)
Proteína C9orf72/genética , Enfermedad de Parkinson/genética , Secuencias Repetitivas de Ácidos Nucleicos , Anciano , Alelos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
6.
Mol Genet Metab ; 117(2): 179-85, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26410072

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder, caused by aging, genetic and environmental factors. Many genes and genetic loci have been implicated in autosomal dominant and recessive PD, among them SNCA, LRRK2, GBA, Parkin, DJ1 and PINK1. Mutations in the LRRK2 and GBA genes are especially common among PD patients of Ashkenazi-Jewish (AJ) origin, accounting for over a third of the patient population. We aimed to identify genes and cellular pathways that may be involved in GBA-associated PD. Whole genome expression analysis was performed using peripheral blood leukocytes (PBLs) of PD patients with mutations in the GBA gene (PD-GBA, n = 59) compared to healthy controls (n = 59). Significant expression changes were detected in 26 genes, most of them were down-regulated in patients and annotated to B cell or immune-related functions. The expression levels of five membrane-bound B cell genes (FCRL1, CD19, CD22, CD79A and CD180) were further analyzed in four distinct populations: (1) Healthy controls (n = 20), (2) PD-GBA (n = 20), (3) PD patients who do not carry LRRK2 or GBA mutations (PD-NC, n = 20), (4) Asymptomatic 1st degree family members, with (n = 15) or without (n = 15) GBA mutations. In qRT-PCR analysis, all five genes were down-regulated in patients (PD-GBA and PD-NC) compared to controls. These changes in expression were not observed when comparing family members who carry GBA mutations to non-carrier family members. Furthermore, these expression levels were disease-duration dependent: the most significant decreased expression occurred after the first two years of onset, and remained steady after 6 years. These results further support the involvement of B cell-related genes in PD and correlate the level of reduced expression to disease duration.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Enfermedad de Parkinson/genética , beta-Glucosidasa/genética , Anciano , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Antígenos CD79/genética , Antígenos CD79/metabolismo , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...