Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(6): e0253825, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34170967

RESUMEN

Small airways are difficult to access. Exhaled droplets, also referred to as particles, provide a sample of small airway lining fluid and may reflect inflammatory responses. We aimed to explore the effect of smoking on the composition and number of exhaled particles in a smoker-enriched study population. We collected and chemically analyzed exhaled particles from 102 subjects (29 never smokers, 36 former smokers and 37 current smokers) aged 39 to 83 years (median 63). A breathing maneuver maximized the number exhaled particles, which were quantified with a particle counter. The contents of surfactant protein A and albumin in exhaled particles was quantified with immunoassays and the contents of the phospholipids dipalmitoyl- and palmitoyl-oleoyl- phosphatidylcholine with mass spectrometry. Subjects also performed spirometry and nitrogen single breath washout. Associations between smoking status and the distribution of contents in exhaled particles and particle number concentration were tested with quantile regression, after adjusting for potential confounders. Current smokers, compared to never smokers, had higher number exhaled particles and more surfactant protein A in the particles. The magnitude of the effects of current smoking varied along the distribution of each PEx-variable. Among subjects with normal lung function, phospholipid levels were elevated in current smokers, in comparison to no effect of smoking on these lipids at abnormal lung function. Smoking increased exhaled number of particles and the contents of lipids and surfactant protein A in the particles. These findings might reflect early inflammatory responses to smoking in small airway lining fluid, also when lung function is within normal limits.


Asunto(s)
Espiración , Pulmón/metabolismo , Fosfatidilcolinas/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Fumadores , Fumar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Pruebas Respiratorias , Femenino , Humanos , Masculino , Persona de Mediana Edad
2.
Chemosphere ; 190: 35-42, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28985535

RESUMEN

Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1-3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m-3, as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0-20 m3 day-1), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Poliuretanos/química , Benzo(a)pireno/análisis , Humanos , Viento , Lugar de Trabajo/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...