Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 33, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273366

RESUMEN

Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Ratones , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales/metabolismo , Neuroglía/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo
2.
Vision Res ; 210: 108268, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295269

RESUMEN

In retinal degenerative diseases, such as retinitis pigmentosa (RP), the characteristic photoreceptor cell death is associated with changes of microglia and macroglia cells. Gene therapy, a promising treatment option for RP, is based on the premise that glial cell remodeling does not impact vision rescue. However, the dynamics of glial cells after treatment at late disease stages are not well understood. Here, we tested the reversibility of specific RP glia phenotypes in a Pde6b-deficient RP gene therapy mouse model. We demonstrated an increased number of activated microglia, retraction of microglial processes, reactive gliosis of Müller cells, astrocyte remodelling and an upregulation of glial fibrillary acidic protein (GFAP) in response to photoreceptor degeneration. Importantly, these changes returned to normal following rod rescue at late disease stages. These results suggest that therapeutic approaches restore the homeostasis between photoreceptors and glial cells.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Ratones , Microglía/metabolismo , Retinitis Pigmentosa/terapia , Retina/metabolismo , Neuroglía/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Modelos Animales de Enfermedad
3.
Cell Mol Life Sci ; 79(3): 148, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195763

RESUMEN

Patients with progressive neurodegenerative disorder retinitis pigmentosa (RP) are diagnosed in the midst of ongoing retinal degeneration and remodeling. Here, we used a Pde6b-deficient RP gene therapy mouse model to test whether treatment at late disease stages can halt photoreceptor degeneration and degradative remodeling, while sustaining constructive remodeling and restoring function. We demonstrated that when fewer than 13% of rods remain, our genetic rescue halts photoreceptor degeneration, electroretinography (ERG) functional decline and inner retinal remodeling. In addition, in a water maze test, the performance of mice treated at 16 weeks of age or earlier was indistinguishable from wild type. In contrast, no efficacy was apparent in mice treated at 24 weeks of age, suggesting the photoreceptors had reached a point of no return. Further, remodeling in the retinal pigment epithelium (RPE) and retinal vasculature was not halted at 16 or 24 weeks of age, although there appeared to be some slowing of blood vessel degradation. These data suggest a novel working model in which restoration of clinically significant visual function requires only modest threshold numbers of resilient photoreceptors, halting of destructive remodeling and sustained constructive remodeling. These novel findings define the potential and limitations of RP treatment and suggest possible nonphotoreceptor targets for gene therapy optimization.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Terapia Genética/métodos , Enfermedades Neurodegenerativas/metabolismo , Mutación Puntual , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía/métodos , Ratones , Ratones Transgénicos , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Vasos Retinianos/metabolismo , Retinitis Pigmentosa/metabolismo , Tamoxifeno/administración & dosificación
4.
Hum Mutat ; 40(12): 2377-2392, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403230

RESUMEN

Small molecule pharmacological inhibition of dominant human genetic disease is a feasible treatment that does not rely on the development of individual, patient-specific gene therapy vectors. However, the consequences of protein inhibition as a clinical therapeutic are not well-studied. In advance of human therapeutic trials for CAPN5 vitreoretinopathy, genetic inactivation can be used to infer the effect of protein inhibition in vivo. We created a photoreceptor-specific knockout (KO) mouse for Capn5 and compared the retinal phenotype to both wild-type and an existing Capn5 KO mouse model. In humans, CAPN5 loss-of-function (LOF) gene variants were ascertained in large exome databases from 60,706 unrelated subjects without severe disease phenotypes. Ocular examination of the retina of Capn5 KO mice by histology and electroretinography showed no significant abnormalities. In humans, there were 22 LOF CAPN5 variants located throughout the gene and in all major protein domains. Structural modeling of coding variants showed these LOF variants were nearby known disease-causing variants within the proteolytic core and in regions of high homology between human CAPN5 and 150 homologs, yet the LOF of CAPN5 was tolerated as opposed to gain-of-function disease-causing variants. These results indicate that localized inhibition of CAPN5 is a viable strategy for hyperactivating disease alleles.


Asunto(s)
Calpaína/genética , Enfermedades de la Coroides/genética , Enfermedades Hereditarias del Ojo/genética , Mutación , Degeneración Retiniana/genética , Tamoxifeno/farmacología , Animales , Calpaína/química , Calpaína/metabolismo , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Silenciador del Gen , Humanos , Masculino , Ratones , Modelos Moleculares , Células Fotorreceptoras de Vertebrados/metabolismo
5.
Adv Exp Med Biol ; 1074: 101-107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721933

RESUMEN

Retinal gene therapy has yet to achieve sustained rescue after disease onset - perhaps because transduction efficiency is insufficient ("too little") and/or the disease is too advanced ("too late") in humans. To test the latter hypothesis, we used a mouse model for retinitis pigmentosa (RP) that allowed us to restore the mutant gene in all diseased rod photoreceptor cells, thereby generating optimally treated retinas. We then treated mice at an advanced disease stage and analyzed the rescue. We showed stable, sustained rescue of photoreceptor structure and function for at least 1 year, demonstrating gene therapy efficacy after onset of degeneration. The results suggest that RP patients are treatable, even when the therapy is administered at late disease stages.


Asunto(s)
Terapia Genética , Retinitis Pigmentosa/terapia , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/biosíntesis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Modelos Animales de Enfermedad , Electrorretinografía , Inducción Enzimática/efectos de los fármacos , Integrasas , Ratones , Mutación Puntual , Proteínas Recombinantes/biosíntesis , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/enzimología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/enzimología , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Organismos Libres de Patógenos Específicos , Tamoxifeno/farmacología , Resultado del Tratamiento
6.
Proc Natl Acad Sci U S A ; 114(20): 5259-5264, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28468800

RESUMEN

Retinitis pigmentosa (RP) is an inherited neurodegenerative disease, in which the death of mutant rod photoreceptors leads secondarily to the non-cell autonomous death of cone photoreceptors. Gene therapy is a promising treatment strategy. Unfortunately, current methods of gene delivery treat only a fraction of diseased cells, yielding retinas that are a mosaic of treated and untreated rods, as well as cones. In this study, we created two RP mouse models to test whether dying, untreated rods negatively impact treated, rescued rods. In one model, treated and untreated rods were segregated. In the second model, treated and untreated rods were diffusely intermixed, and their ratio was controlled to achieve low-, medium-, or high-efficiency rescue. Analysis of these mosaic retinas demonstrated that rescued rods (and cones) survive, even when they are greatly outnumbered by dying photoreceptors. On the other hand, the rescued photoreceptors did exhibit long-term defects in their outer segments (OSs), which were less severe when more photoreceptors were treated. In summary, our study suggests that even low-efficiency gene therapy may achieve stable survival of rescued photoreceptors in RP patients, albeit with OS dysgenesis.


Asunto(s)
Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Animales , Muerte Celular , Modelos Animales de Enfermedad , Terapia Genética/métodos , Ratones , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Rodopsina/metabolismo
7.
J Clin Invest ; 125(9): 3704-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301813

RESUMEN

Hereditary retinal degenerative diseases, such as retinitis pigmentosa (RP), are characterized by the progressive loss of rod photoreceptors followed by loss of cones. While retinal gene therapy clinical trials demonstrated temporary improvement in visual function, this approach has yet to achieve sustained functional and anatomical rescue after disease onset in patients. The lack of sustained benefit could be due to insufficient transduction efficiency of viral vectors ("too little") and/or because the disease is too advanced ("too late") at the time therapy is initiated. Here, we tested the latter hypothesis and developed a mouse RP model that permits restoration of the mutant gene in all diseased photoreceptor cells, thereby ensuring sufficient transduction efficiency. We then treated mice at early, mid, or late disease stages. At all 3 time points, degeneration was halted and function was rescued for at least 1 year. Not only do our results demonstrate that gene therapy effectively preserves function after the onset of degeneration, our study also demonstrates that there is a broad therapeutic time window. Moreover, these results suggest that RP patients are treatable, despite most being diagnosed after substantial photoreceptor loss, and that gene therapy research must focus on improving transduction efficiency to maximize clinical impact.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Transducción Genética/métodos , Animales , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...