Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 10(9)2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34571900

RESUMEN

Iron is crucial to the regulation of the host innate immune system and the outcome of many infections. Hepatitis C virus (HCV), one of the major viral human pathogens that depends on iron to complete its life cycle, is highly skilled in evading the immune system. This study presents the construction and validation of a physiologically relevant triple-cell co-culture model that was used to investigate the input of iron in HCV infection and the interplay between HCV, iron, and determinants of host innate immunity. We recorded the expression patterns of key proteins of iron homeostasis involved in iron import, export and storage and examined their relation to the iron regulatory hormone hepcidin in hepatocytes, enterocytes and macrophages in the presence and absence of HCV. We then assessed the transcriptional profiles of pro-inflammatory cytokines Interleukin-6 (IL-6) and interleukin-15 (IL-15) and anti-inflammatory interleukin-10 (IL-10) under normal or iron-depleted conditions and determined how these were affected by infection. Our data suggest the presence of a link between iron homeostasis and innate immunity unfolding among liver, intestine, and macrophages, which could participate in the deregulation of innate immune responses observed in early HCV infection. Coupled with iron-assisted enhanced viral propagation, such a mechanism may be important for the establishment of viral persistence and the ensuing chronic liver disease.


Asunto(s)
Enterocitos/patología , Hepatitis C/patología , Hepatocitos/patología , Homeostasis , Inmunidad Innata , Hierro/metabolismo , Macrófagos/patología , Técnicas de Cocultivo , Citocinas/metabolismo , Enterocitos/inmunología , Enterocitos/metabolismo , Enterocitos/virología , Hepacivirus/inmunología , Hepacivirus/metabolismo , Hepatitis C/inmunología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatocitos/inmunología , Hepatocitos/metabolismo , Hepatocitos/virología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología
2.
J Hepatol ; 60(1): 30-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23978712

RESUMEN

BACKGROUND & AIMS: HCV relies on host lipid metabolism to complete its life cycle and HCV core is crucial to this interaction. Liver secreted ANGPTL-3 is an LXR- and HNF-1α-regulated protein, which plays a key role in lipid metabolism by increasing plasma lipids via inhibition of lipase enzymes. Here we aimed to investigate the modulation of ANGPTL-3 by HCV core and identify the molecular mechanisms involved. METHODS: qRT-PCR and ELISA were used to assess ANGPTL-3 mRNA and protein levels in HCV patients, the JFH-1 infectious system and liver cell lines. Transfections, chromatin immunoprecipitation and immunofluorescence delineated parts of the molecular mechanisms implicated in the core-mediated regulation of ANGPTL-3 gene expression. RESULTS: ANGPTL-3 gene expression was decreased in HCV-infected patients and the JFH-1 infectious system. mRNA and promoter activity levels were down-regulated by core. The response was lost when an HNF-1α element in ANGPTL-3 promoter was mutated, while loss of HNF-1α DNA binding to this site was recorded in the presence of HCV core. HNF-1α mRNA and protein levels were not altered by core. However, trafficking between nucleus and cytoplasm was observed and then blocked by an inhibitor of the HNF-1α-specific kinase Mirk/Dyrk1B. Transactivation of LXR/RXR signalling could not restore core-mediated down-regulation of ANGPTL-3 promoter activity. CONCLUSIONS: ANGPTL-3 is negatively regulated by HCV in vivo and in vitro. HCV core represses ANGPTL-3 expression through loss of HNF-1α binding activity and blockage of LXR/RXR transactivation. The putative ensuing increase in serum lipid clearance and uptake by the liver may sustain HCV virus replication and persistence.


Asunto(s)
Angiopoyetinas/genética , Hepacivirus/patogenicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Adulto , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , ADN/metabolismo , Regulación hacia Abajo , Femenino , Humanos , Receptores X del Hígado , Masculino , Persona de Mediana Edad , Receptores Nucleares Huérfanos/fisiología , Regiones Promotoras Genéticas , Receptores X Retinoide/fisiología
3.
Virus Res ; 155(1): 213-20, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20959129

RESUMEN

The hepatitis C virus possesses an alternative open reading frame overlapping the Core gene, whose products are referred to as Core+1 or alternative reading frame (ARF) or F protein(s). Extensive studies on genotype HCV-1a demonstrated that ribosomal frameshifting supports the synthesis of core+1 protein, when ten consecutive As are present within core codons 9-11 whereas, in the absence of this motif, expression of the core+1 ORF is mediated mainly by internal translation initiation. However, in HCV-1b, no Core+1 isoforms produced by internal translation initiation have been described. Using constructs which contain the Core/Core+1(342-770) region from previously described HCV-1b clinical isolates from liver biopsies, we provide evidence for the synthesis of Core+1 proteins by internal translation initiation in transiently transfected mammalian cells using nuclear or cytoplasmic expression systems. Site directed mutagenesis analyses revealed that (a) the synthesis of Core+1 proteins is independent from the polyprotein expression, as we observed an increase of Core+1 protein expression from constructs lacking the polyprotein translation initiator, (b) the main Core+1 product is expressed from AUG(85), similarly to the Core+1/S protein of HCV-1a, (c) synthesis of Core+1 isoforms is also mediated from GUG(58) or under certain conditions GUG(26) internal codons, albeit at lower efficiency. Finally, comparable to HCV-1a Core+1 proteins, the HCV-1b Core+1 products are negatively regulated by core expression and the proteaosomal pathway. The expression of Core+1 ORF from HCV-1b clinical isolates and the preservation of translation initiation mechanism that stimulates its expression encourage investigating the role of these proteins in HCV pathogenesis.


Asunto(s)
Hepacivirus/fisiología , Biosíntesis de Proteínas , Proteínas del Núcleo Viral/biosíntesis , Línea Celular , Codón Iniciador , Sistema de Lectura Ribosómico , Genotipo , Hepacivirus/genética , Hepatocitos/virología , Humanos , Proteínas del Núcleo Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA