Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36655978

RESUMEN

During fear learning, defensive behaviors like freezing need to be finely balanced in the presence or absence of threat-predicting cues (conditioned stimulus, CS). Nevertheless, the circuits underlying such balancing are largely unknown. Here, we investigate the role of the ventral tail striatum (vTS) in auditory-cued fear learning of male mice. In vivo Ca2+ imaging showed that sizable sub-populations of direct (D1R+) and indirect pathway neurons (Adora+) in the vTS responded to footshocks, and to the initiation of movements after freezing; moreover, a sub-population of D1R+ neurons increased its responsiveness to an auditory CS during fear learning. In-vivo optogenetic silencing shows that footshock-driven activity of D1R+ neurons contributes to fear memory formation, whereas Adora+ neurons modulate freezing in the absence of a learned CS. Circuit tracing identified the posterior insular cortex (pInsCx) as an important cortical input to the vTS, and recording of optogenetically evoked EPSCs revealed long-term plasticity with opposite outcomes at the pInsCx synapses onto D1R+ - and Adora+ neurons. Thus, direct- and indirect pathways neurons of the vTS show differential signs of plasticity after fear learning, and balance defensive behaviors in the presence and absence of learned sensory cues.


Asunto(s)
Señales (Psicología) , Aprendizaje , Masculino , Ratones , Animales , Aprendizaje/fisiología , Condicionamiento Clásico/fisiología , Neuronas/fisiología , Miedo/fisiología
2.
Cell Rep ; 39(8): 110850, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613578

RESUMEN

The medial amygdala (MeA) receives pheromone information about conspecifics and has crucial functions in social behaviors. A previous study showed that activation of GABA neurons in the postero-dorsal MeA (MeApd) with channelrhodopsin-2H134R (ChR2) stimulates inter-male aggression. When performing these experiments using the faster channelrhodopsinH134R,E123T (ChETA), we find the opposite behavioral outcome. A systematic comparison between the two channelrhodopsin variants reveals that optogenetic activation of MeApd GABA neurons with ChETA suppresses aggression, whereas activation under ChR2 increases aggression. Although the mechanism for this paradoxical difference is not understood, we observe that activation of MeApd GABA neurons with ChR2 causes larger plateau depolarizations, smaller action potentials, and larger local inhibition than with ChETA. Thus, the channelrhodopsin variant used for in vivo optogenetic experiments can radically influence the behavioral outcome. Future work should continue to study the role of specific sub-populations of MeApd GABA neurons in aggression control.


Asunto(s)
Neuronas GABAérgicas , Optogenética , Potenciales de Acción/fisiología , Amígdala del Cerebelo , Channelrhodopsins/genética , Humanos , Masculino
3.
J Neurosci ; 40(20): 3969-3980, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32277045

RESUMEN

The amygdala is a brain area critical for the formation of fear memories. However, the nature of the teaching signal(s) that drive plasticity in the amygdala are still under debate. Here, we use optogenetic methods to investigate the contribution of ventral tegmental area (VTA) dopamine neurons to auditory-cued fear learning in male mice. Using anterograde and retrograde labeling, we found that a sparse and relatively evenly distributed population of VTA neurons projects to the basal amygdala (BA). In vivo optrode recordings in behaving mice showed that many VTA neurons, among them putative dopamine neurons, are excited by footshocks, and acquire a response to auditory stimuli during fear learning. Combined cfos imaging and retrograde labeling in dopamine transporter (DAT) Cre mice revealed that a large majority of BA projectors (>95%) are dopamine neurons, and that BA projectors become activated by the tone-footshock pairing of fear learning protocols. Finally, silencing VTA dopamine neurons, or their axon terminals in the BA during the footshock, reduced the strength of fear memory as tested 1 d later, whereas silencing the VTA-central amygdala (CeA) projection had no effect. Thus, VTA dopamine neurons projecting to the BA contribute to fear memory formation, by coding for the saliency of the footshock event and by signaling such events to the basal amygdala.SIGNIFICANCE STATEMENT Powerful mechanisms of fear learning have evolved in animals and humans to enable survival. During fear conditioning, a sensory cue, such as a tone (the conditioned stimulus), comes to predict an innately aversive stimulus, such as a mild footshock (the unconditioned stimulus). A brain representation of the unconditioned stimulus must act as a teaching signal to instruct plasticity of the conditioned stimulus representation in fear-related brain areas. Here we show that dopamine neurons in the VTA that project to the basal amygdala contribute to such a teaching signal for plasticity, thereby facilitating the formation of fear memories. Knowledge about the role of dopamine in aversively motivated plasticity might allow further insights into maladaptive plasticities that underlie anxiety and post-traumatic stress disorders in humans.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas Dopaminérgicas/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Miedo/fisiología , Miedo/psicología , Aprendizaje/fisiología , Área Tegmental Ventral/fisiología , Estimulación Acústica , Animales , Señales (Psicología) , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Fenómenos Electrofisiológicos/fisiología , Electrochoque , Masculino , Ratones , Neuroimagen
4.
Science ; 366(6472): 1460, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31857474
5.
Science ; 364(6443)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31097492

RESUMEN

Learning about threats is essential for survival. During threat learning, an innocuous sensory percept such as a tone acquires an emotional meaning when paired with an aversive stimulus such as a mild footshock. The amygdala is critical for threat memory formation, but little is known about upstream brain areas that process aversive somatosensory information. Using optogenetic techniques in mice, we found that silencing of the posterior insula during footshock reduced acute fear behavior and impaired 1-day threat memory. Insular cortex neurons respond to footshocks, acquire responses to tones during threat learning, and project to distinct amygdala divisions to drive acute fear versus threat memory formation. Thus, the posterior insula conveys aversive footshock information to the amygdala and is crucial for learning about potential dangers in the environment.


Asunto(s)
Adaptación Psicológica/fisiología , Amígdala del Cerebelo/fisiología , Miedo/fisiología , Recuerdo Mental/fisiología , Corteza Somatosensorial/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética
6.
Neuron ; 99(4): 720-735.e6, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30078579

RESUMEN

Parvalbumin (PV)-expressing interneurons mediate fast inhibition of principal neurons in many brain areas; however, long-term plasticity at PV-interneuron output synapses has been less well studied. In the auditory cortex, thalamic inputs drive reliably timed action potentials (APs) in principal neurons and PV-interneurons. Using paired recordings in the input layer of the mouse auditory cortex, we found a marked spike-timing-dependent plasticity (STDP) at PV-interneuron output synapses. Long-term potentiation of inhibition (iLTP) is observed upon postsynaptic (principal neuron) then presynaptic (PV-interneuron) AP firing. The opposite AP order causes GABAB-mediated long-term depression of inhibition (iLTD), which is developmentally converted to iLTP in an experience-dependent manner. Genetic deletion of GABAB receptors in principal neurons suppressed iLTD and produced deficits in auditory map remodeling. Output synapses of PV-interneurons thus show marked STDP, and one limb of this plasticity, GABAB-dependent iLTD, is a candidate mechanism for disinhibition during auditory critical period plasticity.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Parvalbúminas/fisiología , Sinapsis/fisiología , Animales , Corteza Auditiva/química , Corteza Auditiva/citología , Femenino , Interneuronas/química , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Ratones Transgénicos , Parvalbúminas/análisis , Receptores de GABA-B/deficiencia , Sinapsis/química
7.
J Neurosci ; 37(17): 4604-4617, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28363983

RESUMEN

Parvalbumin-expressing inhibitory neurons in the mammalian CNS are specialized for fast transmitter release at their output synapses. However, the Ca2+ sensor(s) used by identified inhibitory synapses, including the output synapses of parvalbumin-expressing inhibitory neurons, have only recently started to be addressed. Here, we investigated the roles of Syt1 and Syt2 at two types of fast-releasing inhibitory connections in the mammalian CNS: the medial nucleus of the trapezoid body to lateral superior olive glycinergic synapse, and the basket/stellate cell-Purkinje GABAergic synapse in the cerebellum. We used conditional and conventional knock-out (KO) mouse lines, with viral expression of Cre-recombinase and a light-activated ion channel for optical stimulation of the transduced fibers, to produce Syt1-Syt2 double KO synapses in vivo Surprisingly, we found that KO of Syt2 alone had only minor effects on evoked transmitter release, despite the clear presence of the protein in inhibitory nerve terminals revealed by immunohistochemistry. We show that Syt1 is weakly coexpressed at these inhibitory synapses and must be genetically inactivated together with Syt2 to achieve a significant reduction and desynchronization of fast release. Thus, our work identifies the functionally relevant Ca2+ sensor(s) at fast-releasing inhibitory synapses and shows that two major Syt isoforms can cooperate to mediate release at a given synaptic connection.SIGNIFICANCE STATEMENT During synaptic transmission, the influx of Ca2+ into the presynaptic nerve terminal activates a Ca2+ sensor for vesicle fusion, a crucial step in the activity-dependent release of neurotransmitter. Synaptotagmin (Syt) proteins, and especially Syt1 and Syt2, have been identified as the Ca2+ sensor at excitatory synapses, but the Ca2+ sensor(s) at inhibitory synapses in native brain tissue are not well known. We found that both Syt1 and Syt2 need to be genetically inactivated to cause a significant reduction of activity-evoked release at two types of fast inhibitory synapses in mouse brain. Thus, we identify Syt2 as a functionally important Ca2+ sensor at fast-releasing inhibitory synapses, and show that Syt1 and Syt2 can redundantly control transmitter release at specific brain synapses.


Asunto(s)
Neuronas/fisiología , Parvalbúminas/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagmina II/fisiología , Sinaptotagmina I/fisiología , Animales , Cerebelo/metabolismo , Glicina/metabolismo , Ratones , Ratones Noqueados , Fibras Nerviosas/fisiología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Estimulación Luminosa , Ácido gamma-Aminobutírico/fisiología
9.
Neuron ; 90(5): 984-99, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27210552

RESUMEN

Various Synaptotagmin (Syt) isoform genes are found in mammals, but it is unknown whether Syts can function redundantly in a given nerve terminal, or whether isoforms can be switched during the development of a nerve terminal. Here, we investigated the possibility of a developmental Syt isoform switch using the calyx of Held as a model synapse. At mature calyx synapses, fast Ca(2+)-driven transmitter release depended entirely on Syt2, but the release phenotype of Syt2 knockout (KO) mice was weaker at immature calyces, and absent at pre-calyceal synapses early postnatally. Instead, conditional genetic inactivation shows that Syt1 mediates fast release at pre-calyceal synapses, as well as a fast release component resistant to Syt2 deletion in immature calyces. This demonstrates a developmental Syt1-Syt2 isoform switch at an identified synapse, a mechanism that could fine-tune the speed, reliability, and plasticity of transmitter release at fast releasing CNS synapses.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Sinapsis/metabolismo , Sinaptotagmina II/metabolismo , Sinaptotagmina I/metabolismo , Animales , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Ratones , Ratones Noqueados , Isoformas de Proteínas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina II/genética
10.
Cold Spring Harb Protoc ; 2015(8): 761-8, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26240411

RESUMEN

Ca(2+) uncaging can be used to create a spatially homogenous elevation of the intracellular free Ca(2+) concentration, [Ca(2+)]i, in cells. When applied to nerve terminals or secretory cells, this technique allows one to elicit transmitter release with a [Ca(2+)]i signal of measurable amplitude, and therefore to directly relate the rate of transmitter release to the measured [Ca(2+)]i. When combined with patch-clamp measurements, Ca(2+) uncaging is done by introducing a Ca(2+)-loaded photolyzable Ca(2+) chelator (like DM-nitrophen) into the cell via the whole-cell patch-pipette. A brief light pulse from a flash lamp or a pulsed laser is used to photolyze the DM-nitrophen. The resulting increase in [Ca(2+)]i is measured with ratiometric fluorescent indicators of suitable Ca(2+) affinity, such as Fura-2, Fura-4F, Fura-2FF, or Fura-6F, depending on the postflash [Ca(2+)]i values. To quantitatively measure [Ca(2+)]i, an accurate calibration of the fluorescent indicator in the presence of the photolyzable Ca(2+) chelator is necessary, which will be described here. Ca(2+) uncaging in nerve terminals has proven useful for investigating Ca(2+)-dependent functions like transmitter release, short-term plasticity, and exocytosis-endocytosis coupling in the presynaptic compartment of neurons.


Asunto(s)
Calcio/análisis , Fluorometría/métodos , Fluorometría/normas , Neuronas/fisiología , Transmisión Sináptica , Animales , Tronco Encefálico , Técnicas de Placa-Clamp/métodos , Ratas
11.
PLoS Comput Biol ; 11(5): e1004253, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25951120

RESUMEN

The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.


Asunto(s)
Canales de Calcio/metabolismo , Modelos Neurológicos , Sinapsis/metabolismo , Animales , Quelantes del Calcio , Biología Computacional , Simulación por Computador , Ácido Egtácico/análogos & derivados , Técnicas In Vitro , Cinética , Ratones , Ratones Endogámicos C57BL , Procesos Estocásticos , Vesículas Sinápticas/metabolismo , Cuerpo Trapezoide/metabolismo
12.
J Neurosci ; 34(38): 12622-35, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232102

RESUMEN

Ca(2+)-dependent transmitter release occurs in a fast and in a slow phase, but the differential roles of Ca(2+) buffers and Ca(2+) sensors in shaping release kinetics are still controversial. Replacing extracellular Ca(2+) by Sr(2+) causes decreased fast release but enhanced slow release at many synapses. Here, we established presynaptic Sr(2+) uncaging and made quantitative Sr(2+)- and Ca(2+)-imaging experiments at the mouse calyx of Held synapse, to reveal the interplay between Ca(2+) sensors and Ca(2+) buffers in the control of fast and slow release. We show that Sr(2+) activates the fast, Synaptotagmin-2 (Syt2) sensor for vesicle fusion with sixfold lower affinity but unchanged high cooperativity. Surprisingly, Sr(2+) also activates the slow sensor that remains in Syt2 knock-out synapses with a lower efficiency, and Sr(2+) was less efficient than Ca(2+) in the limit of low concentrations in wild-type synapses. Quantitative imaging experiments show that the buffering capacity of the nerve terminal is markedly lower for Sr(2+) than for Ca(2+) (~5-fold). This, together with an enhanced Sr(2+) permeation through presynaptic Ca(2+) channels (~2-fold), admits a drastically higher spatially averaged Sr(2+) transient compared with Ca(2+). Together, despite the lower affinity of Sr(2+) at the fast and slow sensors, the massively higher amplitudes of spatially averaged Sr(2+) transients explain the enhanced late release. This also allows us to conclude that Ca(2+) buffering normally controls late release and prevents the activation of the fast release sensor by residual Ca(2+).


Asunto(s)
Calcio/metabolismo , Terminaciones Nerviosas/fisiología , Estroncio/metabolismo , Transmisión Sináptica/fisiología , Animales , Quelantes/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Imagen Óptica , Transmisión Sináptica/efectos de los fármacos , Sinaptotagmina II/genética , Sinaptotagmina II/metabolismo
13.
Elife ; 3: e01715, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24520164

RESUMEN

Transmitter release at synapses is regulated by preceding neuronal activity, which can give rise to short-term enhancement of release like post-tetanic potentiation (PTP). Diacylglycerol (DAG) and Protein-kinase C (PKC) signaling in the nerve terminal have been widely implicated in the short-term modulation of transmitter release, but the target protein of PKC phosphorylation during short-term enhancement has remained unknown. Here, we use a gene-replacement strategy at the calyx of Held, a large CNS model synapse that expresses robust PTP, to study the molecular mechanisms of PTP. We find that two PKC phosphorylation sites of Munc18-1 are critically important for PTP, which identifies the presynaptic target protein for the action of PKC during PTP. Pharmacological experiments show that a phosphatase normally limits the duration of PTP, and that PTP is initiated by the action of a 'conventional' PKC isoform. Thus, a dynamic PKC phosphorylation/de-phosphorylation cycle of Munc18-1 drives short-term enhancement of transmitter release during PTP. DOI: http://dx.doi.org/10.7554/eLife.01715.001.


Asunto(s)
Proteínas Munc18/metabolismo , Neurotransmisores/metabolismo , Proteína Quinasa C/metabolismo , Sinapsis/metabolismo , Animales , Ratones
14.
Cell Calcium ; 52(3-4): 199-207, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22682961

RESUMEN

Ca(2+)-dependent transmitter release is the most important signaling mechanism for fast information transfer between neurons. Transmitter release takes places at highly specialized active zones with sub-micrometer dimension, which contain the molecular machinery for vesicle docking and -fusion, as well as a high density of voltage-gated Ca(2+) channels. In the absence of direct evidence for the ultrastructural localization of Ca(2+) channels at CNS synapses, important insights into Ca(2+) channel-vesicle coupling has come from functional experiments relating presynaptic Ca(2+) current and transmitter release, at large and accessible synapses like the calyx of Held. First, high slope values in log-log plots of transmitter release versus presynaptic Ca(2+) current indicate that multiple Ca(2+) channels are involved in release control of a single vesicle. Second, release kinetics in response to step-like depolarizations revealed fast- and slowly releasable sub-pools of vesicles, FRP and SRP, which, according to the "positional" model, are distinguished by a differential proximity to Ca(2+) channels. Considering recent evidence for a rapid conversion of SRP- to FRP vesicles, however, we highlight that multivesicular release events and clearance of vesicle membrane from the active zone must be taken into account when interpreting kinetic release data. We conclude that the careful kinetic analysis of transmitter release at presynaptically accessible and molecularly targeted synapses has the potential to yield important insights into the molecular physiology of transmitter release.


Asunto(s)
Canales de Calcio/metabolismo , Neurotransmisores/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Endocitosis/fisiología , Terminales Presinápticos/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
15.
Trends Neurosci ; 34(5): 237-46, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21439657

RESUMEN

Transmitter release at synapses is driven by elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) near the sites of vesicle fusion. [Ca(2+)](i) signals of profoundly different amplitude and kinetics drive the phasic release component during a presynaptic action potential, and asynchronous release at later times. Studies using direct control of [Ca(2+)](i) at a large glutamatergic terminal, the calyx of Held, have provided significant insight into how intracellular Ca(2+) regulates transmitter release over a wide concentration range. Synaptotagmin-2 (Syt2), the major isoform of the Syt1/2 Ca(2+) sensors at these synapses, triggers highly Ca(2+)-cooperative release above 1µM [Ca(2+)](i), but suppresses release at low [Ca(2+)](i). Thus, neurons utilize a highly sophisticated release apparatus to maximize the dynamic range of Ca(2+)-evoked versus spontaneous release.


Asunto(s)
Encéfalo/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Modelos Neurológicos , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Sinaptotagminas/metabolismo , Animales , Simulación por Computador , Retroalimentación Fisiológica/fisiología , Humanos , Neurotransmisores/metabolismo
16.
Neuron ; 69(4): 736-48, 2011 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-21338883

RESUMEN

Ca²+-evoked transmitter release shows a high dynamic range over spontaneous release. We investigated the role of the Ca²+ sensor protein, Synaptotagmin2 (Syt2), in both spontaneous and Ca²+-evoked release under direct control of presynaptic [Ca²+](i), using an in vivo rescue approach at the calyx of Held. Re-expression of Syt2 rescued the highly Ca²+ cooperative release and suppressed the elevated spontaneous release seen in Syt2 KO synapses. This latter release clamping function was partially mediated by the poly-lysine motif of the C2B domain. Using an aspartate mutation in the C2B domain (D364N) in which Ca²+ triggering was abolished but release clamping remained intact, we show that Syt2 strongly suppresses the action of another, near-linear Ca²+ sensor that mediates release over a wide range of [Ca²+](i). Thus, Syt2 increases the dynamic range of synapses by driving release with a high Ca²+ cooperativity, as well as by suppressing a remaining, near-linear Ca²+ sensor.


Asunto(s)
Vías Auditivas/metabolismo , Calcio/metabolismo , Terminales Presinápticos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Sinaptotagmina II/metabolismo , Animales , Animales Recién Nacidos , Asparagina/genética , Ácido Aspártico/genética , Vías Auditivas/citología , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Núcleo Coclear/citología , Estimulación Eléctrica/métodos , Lateralidad Funcional/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Mutación/genética , Dinámicas no Lineales , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Sinapsis/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Sinaptotagmina II/deficiencia
17.
J Neurosci ; 31(3): 907-12, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21248115

RESUMEN

The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is the most common genetic cause of Parkinson's disease (PD), accounting for a significant proportion of both autosomal dominant familial and sporadic PD cases. Our aim in the present study is to generate a mammalian model of mutant G2019S LRRK2 pathogenesis, which reproduces the robust nigral neurodegeneration characteristic of PD. We developed adenoviral vectors to drive neuron-specific expression of full-length wild-type or mutant G2019S human LRRK2 in the nigrostriatal system of adult rats. Wild-type LRRK2 did not induce any significant neuronal loss. In contrast, under the same conditions and levels of expression, G2019S mutant LRRK2 causes a progressive degeneration of nigral dopaminergic neurons. Our data provide a novel rat model of PD, based on a prevalent genetic cause, that reproduces a cardinal feature of the disease within a rapid time frame suitable for testing of neuroprotective strategies.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Degeneración Nerviosa/patología , Neuronas/patología , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Análisis de Varianza , Animales , Western Blotting , Encéfalo/metabolismo , Recuento de Células , Dopamina/metabolismo , Femenino , Inmunohistoquímica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Ratas Wistar
18.
Mol Cell Neurosci ; 44(4): 374-85, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20470891

RESUMEN

The large glutamatergic calyx of Held synapse in the auditory brainstem has become a powerful model for studying transmitter release mechanisms, but the molecular bases of presynaptic function at this synapse are not well known. Here, we have used single-cell quantitative PCR (qPCR) to study the developmental expression of all major Synaptotagmin (Syt) isoforms in putative calyx of Held-generating neurons (globular bushy cells) of the ventral cochlear nucleus. Using electrophysiological criteria and the expression of marker genes including VGluTs (vesicular glutamate transporters), Ca(2+) binding proteins, and the transcription factor Math5, we identified a subset of the recorded neurons as putative calyx of Held-generating bushy cells. At postnatal days 12-15 these neurons expressed Syt-2 and Syt-11, and also Syt-3, -4, -7 and -13 at lower levels, whereas Syt-1 and -9 were absent. Interestingly, early in development (at P3-P6), immature bushy cells expressed a larger number of Syt-isoforms, with Syt-1, Syt-5, Syt-9 and Syt-13 detected in a significantly higher percentage of neurons. Our study sheds light on the molecular properties of putative calyx of Held-generating neurons and shows the developmental regulation of the Syt-isoform expression profile in a single neuron type.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Sinaptotagminas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Vías Auditivas/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Tronco Encefálico/citología , Proteínas de Unión al Calcio/análisis , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Terminales Presinápticos/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Sinaptotagminas/genética , Proteínas de Transporte Vesicular de Glutamato/análisis
19.
J Neurosci ; 30(6): 2007-16, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147529

RESUMEN

The two fundamental forms of short-term plasticity, short-term depression and facilitation, coexist at most synapses, but little is known about their interaction. Here, we studied the interplay between short-term depression and facilitation at calyx of Held synapses. Stimulation at a "low" frequency of 10 or 20 Hz, which is in the range of the spontaneous activity of these auditory neurons in vivo, induced synaptic depression. Surprisingly, an instantaneous increase of the stimulation frequency to 100 or 200 Hz following the low-frequency train uncovered a robust facilitation of EPSCs relative to the predepressed amplitude level. This facilitation decayed rapidly ( approximately 30 ms) and depended on presynaptic residual Ca(2+), but it was not caused by Ca(2+) current facilitation. To probe the release probability of the remaining readily releasable vesicles following the low-frequency train we made presynaptic Ca(2+) uncaging experiments in the predepressed state of the synapse. We found that low-frequency stimulation depletes the fast-releasable vesicle pool (FRP) down to approximately 40% of control and that the remaining FRP vesicles are released with approximately 2-fold slower release kinetics, indicating a hitherto unknown intrinsic heterogeneity among FRP vesicles. Thus, vesicles with an intrinsically lower release probability predominate after low frequency stimulation and undergo facilitation during the onset of subsequent high-frequency trains. Facilitation in the predepressed state of the synapse might help to stabilize the amount of transmitter release at the onset of high-frequency firing at these auditory synapses.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Sinapsis/fisiología , Estimulación Acústica , Potenciales de Acción , Animales , Calcio/fisiología , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Plasticidad Neuronal , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Vesículas Sinápticas/fisiología
20.
J Physiol ; 587(Pt 12): 3009-23, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19403608

RESUMEN

Developmental refinement of synaptic transmission can occur via changes in several pre- and postsynaptic factors, but it has been unknown whether the intrinsic Ca2+ sensitivity of vesicle fusion in the nerve terminal can be regulated during development. Using the calyx of Held, a giant synapse in the auditory pathway, we studied the presynaptic mechanisms underlying the developmental regulation of Ca2+-secretion coupling, comparing a time period before, and shortly after the onset of hearing in rats. We found an approximately 2-fold leftward shift in the relationship between EPSC amplitude and presynaptic Ca2+ current charge (QCa), indicating that brief presynaptic Ca2+ currents become significantly more efficient in driving release. Using a Ca2+ tail current protocol, we also found that the high cooperativity between EPSC amplitude and QCa was slightly reduced with development. In contrast, in presynaptic Ca2+ uncaging experiments, the intrinsic Ca2+ cooperativity of vesicle fusion was identical, and the intrinsic Ca2+ sensitivity was slightly reduced with development. This indicates that the significantly enhanced release efficiency of brief Ca2+ currents must be caused by a tighter co-localization of Ca2+ channels and readily releasable vesicles, but not by changes in the intrinsic properties of Ca2+-dependent release. Using the parameters of the intrinsic Ca2+ sensitivity measured at each developmental stage, we estimate that during a presynaptic action potential (AP), a given readily releasable vesicle experiences an about 1.3-fold higher 'local' intracellular Ca2+ concentration ([Ca2+]i) signal with development. Thus, the data indicate a tightening in the Ca2+ channel-vesicle co-localization during development, without a major change in the intrinsic Ca2+ sensitivity of vesicle fusion.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Señalización del Calcio/fisiología , Calcio/fisiología , Vesículas Sinápticas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Vías Auditivas/crecimiento & desarrollo , Tronco Encefálico/crecimiento & desarrollo , Canales de Calcio/fisiología , Interpretación Estadística de Datos , Electrofisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Neurotransmisores/metabolismo , Neurotransmisores/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...