Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Psychol ; 15: 1441184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315049

RESUMEN

Introduction: Food is a vital human need, and the human visual system is finely tuned to detect and respond to food cues in the environment. The omnipresence of food cues across various settings has been linked to the prevalence of obesity in susceptible populations. However, the influence of the post-prandial state on visual attention to food stimuli remains poorly understood. This study aimed to elucidate how a 12 hour fast affects visual attention to food and non-food stimuli in healthy, non-obese individuals. Methods: Visual attention was assessed by measuring the total duration of visual fixations on stimuli presented on a computer screen, using a screen-based eye tracker (Tobii X2-60). Participants were divided into two groups: those who had fasted for 12 hours and those tested within two hours after consuming breakfast (satiated state). Additionally, performance on the Food Stroop task and electrodermal activity (EDA) responses were measured to evaluate attentional interference and physiological arousal, respectively. Salivary samples were also collected to assess levels of alpha-amylase and cortisol. Results: Fasted participants exhibited a progressive decline in visual attention toward food stimuli compared to satiated individuals, reflecting a satiated state. This effect was independent of the palatability of the depicted food items and was not observed with stimuli representing non-food items. The Food Stroop task revealed no differences between fasting and satiated participants, indicating that the presence of food-related stimuli does not differentially impact attentional interference under varying hunger states. Moreover, no significant variations were observed in EDA responses across participant groups and stimulus types, suggesting that the modulation of visual attention to food cues by hunger is independent of physiological arousal. Interestingly, satiated subjects exhibited higher levels of salivary alpha-amylase, which was inversely related to their subjective hunger ratings. No differences in salivary cortisol levels were found between groups. Discussion: The findings indicate a novel influence of mild hunger on the processing of visual food cues, independent of physiological arousal. The decline in visual attention to food stimuli in fasted individuals suggests that satiety modulates visual processing. The lack of differences in attentional interference and physiological arousal between fasting and satiated states further supports the notion that visual attention to food cues is primarily driven by hunger-related mechanisms rather than stress. Additionally, the inverse relationship between salivary alpha-amylase levels and hunger ratings implies that alpha-amylase may serve as a marker of satiety rather than stress.

2.
Nat Ecol Evol ; 6(9): 1381-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817825

RESUMEN

A longstanding issue in biology is whether the intelligence of animals can be predicted by absolute or relative brain size. However, progress has been hampered by an insufficient understanding of how neuron numbers shape internal brain organization and cognitive performance. On the basis of estimations of neuron numbers for 111 bird species, we show here that the number of neurons in the pallial telencephalon is positively associated with a major expression of intelligence: innovation propensity. The number of pallial neurons, in turn, is greater in brains that are larger in both absolute and relative terms and positively covaries with longer post-hatching development periods. Thus, our analyses show that neuron numbers link cognitive performance to both absolute and relative brain size through developmental adjustments. These findings help unify neuro-anatomical measures at multiple levels, reconciling contradictory views over the biological significance of brain expansion. The results also highlight the value of a life history perspective to advance our understanding of the evolutionary bases of the connections between brain and cognition.


Asunto(s)
Aves , Neuronas , Animales , Aves/fisiología , Encéfalo/fisiología , Inteligencia/fisiología , Neuronas/fisiología , Tamaño de los Órganos
3.
Proc Natl Acad Sci U S A ; 119(11): e2121624119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254911

RESUMEN

SignificanceThe evolution of brain processing capacity has traditionally been inferred from data on brain size. However, similarly sized brains of distantly related species can differ in the number and distribution of neurons, their basic computational units. Therefore, a finer-grained approach is needed to reveal the evolutionary paths to increased cognitive capacity. Using a new, comprehensive dataset, we analyzed brain cellular composition across amniotes. Compared to reptiles, mammals and birds have dramatically increased neuron numbers in the telencephalon and cerebellum, which are brain parts associated with higher cognition. Astoundingly, a phylogenetic analysis suggests that as few as four major changes in neuron-brain scaling in over 300 million years of evolution pave the way to intelligence in endothermic land vertebrates.


Asunto(s)
Evolución Biológica , Encéfalo/citología , Encéfalo/fisiología , Recuento de Células , Neuronas/citología , Vertebrados , Animales , Filogenia , Carácter Cuantitativo Heredable , Vertebrados/clasificación
4.
Commun Biol ; 4(1): 503, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958700

RESUMEN

Recent studies indicate that yawning evolved as a brain cooling mechanism. Given that larger brains have greater thermolytic needs and brain temperature is determined in part by heat production from neuronal activity, it was hypothesized that animals with larger brains and more neurons would yawn longer to produce comparable cooling effects. To test this, we performed the largest study on yawning ever conducted, analyzing 1291 yawns from 101 species (55 mammals; 46 birds). Phylogenetically controlled analyses revealed robust positive correlations between yawn duration and (1) brain mass, (2) total neuron number, and (3) cortical/pallial neuron number in both mammals and birds, which cannot be attributed solely to allometric scaling rules. These relationships were similar across clades, though mammals exhibited considerably longer yawns than birds of comparable brain and body mass. These findings provide further evidence suggesting that yawning is a thermoregulatory adaptation that has been conserved across amniote evolution.


Asunto(s)
Aves/fisiología , Encéfalo/anatomía & histología , Mamíferos/fisiología , Neuronas/citología , Bostezo , Animales , Aves/anatomía & histología , Encéfalo/fisiología , Mamíferos/anatomía & histología , Neuronas/fisiología , Tamaño de los Órganos
5.
Proc Natl Acad Sci U S A ; 113(26): 7255-60, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298365

RESUMEN

Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence.


Asunto(s)
Aves , Encéfalo/citología , Neuronas , Animales , Recuento de Células , Femenino , Masculino , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA