Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27883, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38545158

RESUMEN

The in situ coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined. The conductive coatings were further used to functionalize both isotropic and anisotropic electrospun polyurethane nanofibrous mats to show their applicability and study the bioactive effect of both the anisotropy and conductivity together. The morphology of composites was studied by means of atomic force microscopy and scanning electron microscopy. A complex cytocompatibility study was performed, including determining cytotoxicity by optical and fluorescence microscopy, the advanced qualification of cell morphology by cell-image analysis, and a study of stem cell behavior. The results clearly showed the significant impact of substrate modification on cells, especially on fibroblasts while the embryonic stem cells were less affected. This study shows not only the effective way to prepare a thin conducting layer based on polypyrrole but also demonstrates its importance for the fabrication of smart biomaterials.

2.
Langmuir ; 39(37): 13140-13148, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656891

RESUMEN

This work explores application of phase separation phenomena for structuring of films made from hyaluronan. A time-sequenced dispensing of different solution mixtures was applied under rotation of hyaluronan-covered substrates to generate surface textures. This method is applicable in direct surface modification or cover layer deposition. Changes in the surface topography were characterized by atomic force microscopy, optical microscopy, and contact and non-contact profilometry. The mechanical properties of the surface-modified self-supporting films were compared using a universal testing machine. Experimental results show that diverse hyaluronan-based surface reliefs and self-supporting films with improved mechanical properties can be prepared using a newly designed multi-step phase separation process without the need for sacrificial removable templates or additives.

3.
ACS Nano ; 16(5): 7626-7635, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35521760

RESUMEN

Nucleated protein self-assembly of an azido modified spider silk protein was employed in the preparation of nanofibrillar networks with hydrogel-like properties immobilized on coatings of the same protein. Formation of the networks in a mild aqueous environment resulted in thicknesses between 2 and 60 nm, which were controlled only by the protein concentration. Incorporated azido groups in the protein were used to "click" short nucleic acid sequences onto the nanofibrils, which were accessible to specific hybridization-based modifications, as proved by fluorescently labeled DNA complements. A lipid modifier was used for efficient incorporation of DNA into the membrane of nonadherent Jurkat cells. Based on the complementarity of the nucleic acids, highly specific DNA-assisted immobilization of the cells on the nanohydrogels with tunable cell densities was possible. Addressability of the DNA cell-to-surface anchor was demonstrated with a competitive oligonucleotide probe, resulting in a rapid release of 75-95% of cells. In addition, we developed a photolithography-based patterning of arbitrarily shaped microwells, which served to spatially define the formation of the nanohydrogels. After detaching the photoresist and PEG-blocking of the surface, DNA-assisted immobilization of the Jurkat cells on the nanohydrogel microstructures was achieved with high fidelity.


Asunto(s)
ADN , Seda , Seda/química , ADN/química , Hibridación de Ácido Nucleico , Hidrogeles/química
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269688

RESUMEN

The pseudo 3D hierarchical structure mimicking in vivo microenvironment was prepared by phase separation on tissue culture plastic. For surface treatment, time-sequenced dosing of the solvent mixture with various concentrations of polymer component was used. The experiments showed that hierarchically structured surfaces with macro, meso and micro pores can be prepared with multi-step phase separation processes. Changes in polystyrene surface topography were characterized by atomic force microscopy, scanning electron microscopy and contact profilometry. The cell proliferation and changes in cell morphology were tested on the prepared structured surfaces. Four types of cell lines were used for the determination of impact of the 3D architecture on the cell behavior, namely the mouse embryonic fibroblast, human lung carcinoma, primary human keratinocyte and mouse embryonic stem cells. The increase of proliferation of embryonic stem cells and mouse fibroblasts was the most remarkable. Moreover, the embryonic stem cells express different morphology when cultured on the structured surface. The acquired findings expand the current state of knowledge in the field of cell behavior on structured surfaces and bring new technological procedures leading to their preparation without the use of problematic temporary templates or additives.


Asunto(s)
Fibroblastos , Polímeros , Animales , Proliferación Celular , Ratones , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Polímeros/química , Propiedades de Superficie
5.
Carbohydr Polym ; 254: 117307, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357873

RESUMEN

The conditions determining network-forming and aggregation properties of hyaluronan on the mica surface were studied. The hyaluronan was deposited on the surface from aqueous and saline solutions and attached by a bivalent cation. The morphology of the immobilized assemblies was characterized by atomic force microscopy. The experimental results show that the morphology and size of the aggregates as well as the density of the interconnecting fibrillar network, both made of hyaluronan, at the liquid-solid phase interface are determined not only by its molecular weight or concentration in solution, but also by the dissolution conditions and storage time. These findings extend the current state of knowledge about the conformational variability of this biologically important polymer. Understanding the conformational variability is of great importance, as it governs the physiological functions of hyaluronan, as well as its processability and formulations. That in turn determines its usability in different pharmacological and biomaterial applications.


Asunto(s)
Ácido Hialurónico/química , Polímeros/química , Silicatos de Aluminio/química , Almacenaje de Medicamentos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica/métodos , Estructura Molecular , Peso Molecular , Solución Salina Hipertónica/química , Solubilidad , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA